K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

giúp mình vs mình đang cần gấp T-T

10 tháng 10 2021

Đặt \(A=1+5+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)

\(\Rightarrow A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{399}+5^{400}+5^{401}\right)+\left(5^{402}+5^{403}+5^{404}\right)\)

\(\Rightarrow A=31.1+31.5^3+...+31.5^{402}\)

\(\Rightarrow A=31\left(1+5^3+5^6+...+5^{402}\right)\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

26 tháng 4 2017

Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)

      = \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)

      =   \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)

      =      \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)

      =       \(31\cdot1+...+31\cdot5^{402}\)

      =        \(31\cdot\left(1+...+5^{402}\right)⋮31\)

 Vậy tổng trên chia hết cho 31

15 tháng 7 2016

=> B=(1+5+52)+(53+54+55)+...........+(5402+5403+5404)

=> B= 1.(1+5+52)+53.(1+5+52)+.........+5402.(1+5+52)

=> B=1.31+53.31+...........+5402.31

=> B=31.(1+53+........+5402)

Vì 31 chia hết cho 31  => 31.(1+53+............+5402) chia hết cho 31

=> B chia hết cho 31               ĐPCM

15 tháng 7 2016

B= (1+5+52)+(53+54+55)+...+(5402+5403+5404)
=(1+5 +52)+ 53(1+5+52)+...+5402(1+5 +52)
=(1+5 +52) + (1 + 53+...+5402) =31(1 + 53+...+5402)
Có 31 chia hết cho 31 =>31(1 + 53+...+5402) chia hết cho 31 => B chia hết cho 31

28 tháng 6 2016

      \(1+5+5^2+...+5^{404}\)

\(=5^3\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{404}\left(1+5+5^2\right)\)

\(=\left(1+5+5^2\right)\left(5^3+5^4+...+5^{403}+5^{404}\right)\)

\(=31.\left(5^3+5^4+...+5^{403}+5^{404}\right)\)

Vậy tổng trên chia hết cho 31

1 + 5 + 52 + .... + 5404

= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 5403 + 5404 )

= 6 + 52 . ( 1 + 5 ) + ... + 5403 . ( 1 + 5 )

=6 + 52 . 6 + ... + 5403 . 6

= 6 . ( 1 + 52 + ... + 5403 )

= 3 . 2 . ( 1 + 52 + .... + 5403 ) chia hét cho 3 

13 tháng 7 2016

Tổng  \(S=1+5+5^2+5^3+...+5^{403}+5^{404}\) có 405 số hạng

405 không chia hết cho 2 nên cộng S theo cách nhóm sau:

\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{402}+5^{403}\right)+5^{404}\)

Sẽ thừa ra số hạng cuối 5404 .

\(S=\left(1+5\right)+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{402}\left(1+5\right)+5^{404}\)

Các số trong () =6 chia hết cho 3 và 5404 không chia hết cho 3 nên S không chia hết cho 3.

13 tháng 7 2016

Lớp 5 đâu học cái này bạn Erza Scarlet

8 tháng 10 2015

Saito Haijme câu hỏi tương tự nhé

 

15 tháng 6 2016

A= 1+5+52+...+5402+5403+5404

  =(1+5+52)+(53+54+56)+....+(5402+5403+5404)

  =1.(1+5+52)+52.(1+5+52)+...+5402.(1+5+52)

  =1.31+52.31+...+5402.31

  =31. (1+52+...+5402) chia hết cho 31

vậy A chia hết cho 3

15 tháng 6 2016

A=1+5+5^2+..+5^402+5^404

=(1+5+5^2)+...+(5^402+5^403+5^404)

=31+..+5^402(1+5+5^2)

=31+...+5^402.31

=31(1+...+5^402) chia hết cho 31

2 tháng 11 2015

Đặt A = 1 + 5 + 5^2 + 5^3 + 5^4 +...+ 5^402 + 5^403 + 5^404

= (1 + 5 + 5^2) + (5^3 + 5^4 + 5^6) +...+ (5^402 + 5^403 + 5^404)

= (1 + 5 + 5^2) + 5^3(1 + 5 + 5^2) +...+ 5^402(1 + 5 + 5^2)

= 31 + 5^2.31 +...+ 5^402.31

= 31.(1 + 5^2 +... + 5^402) chia hết cho 31.

Vậy A chia hết cho 31 (ĐPCM)

2 tháng 11 2015

bấm vào đây nhé chung to1 +5+52 +..............+5402+5403+5404 chia het cho 3

11 tháng 10 2019

1 + 5 + 5^2 + ...+ 5^404

= ( 1 + 5 + 5^2 + 5^3) + ( 5^4 + 5^5+5^6+5^7) + ...+ ( 5^401+ 5^402+5^403+5^404)

= 31+ 5^4.31+...+ 5^401.31

= 31(1+5^4 +...+5^404)

=> đpcm

18 tháng 10 2015

Ta có: A=1+5+55+…+5404

=>A=(1+5+52)+…+(5402+5403+5404)

=>A=(1+5+52)+…+5402.(1+5+52)

=>A=31+…+5402.31

=>A=(1+…+5402).31 chia hết ho 31

=>A chia hết cho 31