199010+19909 và 199110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 199010+19909 là A
Gọi 199110 là B
A=199010+19909=19909(1990+1)=19909.1991
B=199110=19919.1991
Vậy A<B
a: \(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
mà 8<9
nên \(2^{300}< 3^{200}\)
b: \(3^{500}=243^{100}\)
\(7^{300}=343^{100}\)
mà 243<243
nên \(3^{500}< 7^{300}\)
Đức Huy trả lời sai vì XXIVI gồm XXI và VI = 21 + 6 = 27
a: \(42=2\cdot3\cdot7;70=2\cdot5\cdot7\)
=>\(BCNN\left(42;70\right)=2\cdot3\cdot5\cdot7=210\)
=>\(BC\left(42;70\right)=B\left(210\right)=\left\{0;210;420;...\right\}\)
b: \(70=2\cdot5\cdot7;180=3^2\cdot5\cdot2^2\)
=>\(BCNN\left(70;180\right)=2^2\cdot3^2\cdot5\cdot7=1260\)
=>\(BC\left(70;180\right)=\left\{1260;2520;...\right\}\)
c: \(5=5;7=7;8=2^3\)
=>\(BCNN\left(5;7;8\right)=5\cdot7\cdot8=280\)
=>\(BC\left(5;7;8\right)=\left\{280;560;...\right\}\)
d: \(12=2^2\cdot3;18=3^2\cdot2\)
=>\(BCNN\left(12;18\right)=2^2\cdot3^2=36\)
=>\(BC\left(12;18\right)=\left\{36;72;...\right\}\)
e: \(15=3\cdot5;18=3^2\cdot2\)
=>\(BCNN\left(15;18\right)=3^2\cdot2\cdot5=90\)
=>\(BC\left(15;18\right)=\left\{90;180;...\right\}\)
f: \(84=2^2\cdot3\cdot7;108=3^3\cdot2^2\)
=>\(BCNN\left(84;108\right)=2^2\cdot3^3\cdot7=756\)
=>\(BC\left(84;108\right)=\left\{756;1512;...\right\}\)
j: \(33=3\cdot11;44=2^2\cdot11;55=5\cdot11\)
=>\(BCNN\left(33;44;55\right)=3\cdot2^2\cdot5\cdot11=660\)
=>\(BC\left(33;44;55\right)=\left\{660;1320;...\right\}\)
g: \(1=1;12=2^2\cdot3;27=3^3\)
=>\(BCNN\left(1;12;27\right)=1\cdot2^2\cdot3^3=108\)
=>\(BC\left(1;12;27\right)=\left\{108;216;...\right\}\)
n: \(5=5;9=3^2;11=11\)
=>\(BCNN\left(5;9;11\right)=5\cdot3^2\cdot11=495\)
=>\(BC\left(5;9;11\right)=\left\{495;990;...\right\}\)
24 = 23.3; 36 = 24.34; 60 = 22.3.5
ƯCLN( 24; 36; 60) = 22.3 = 12
12 = 22.3; 15 = 3.5; 10 = 2.5
ƯCLN(12; 15; 10) = 1
24 = 23.3; 16 = 24; 8 = 23
ƯCLN(24; 16; 8) = 23
9 = 32; 81 = 34
ƯCLN( 9; 81) = 9
11 = 11; 15 = 3.5
ƯCLN( 11; 15) = 1
1 = 1; 10 = 2.5
ƯCLN(1; 10) = 1
150 = 2.3.52; 84 = 22.3.7
ƯCLN( 150; 84) = 6
\(a,ƯC\left(40,24\right)=Ư\left(8\right)=\left\{...\right\}\\ b,ƯC\left(12,52\right)=Ư\left(4\right)=\left\{...\right\}\\ c,ƯC\left(36,990\right)=Ư\left(18\right)=\left\{...\right\}\\ d,ƯC\left(54,36\right)=Ư\left(9\right)=\left\{...\right\}\\ e,ƯC\left(10,20,70\right)=Ư\left(10\right)=\left\{...\right\}\\ f,ƯC\left(25,55,75\right)=Ư\left(5\right)=\left\{...\right\}\\ g,ƯC\left(80,144\right)=Ư\left(16\right)=\left\{...\right\}\\ h,ƯC\left(63,2970\right)=Ư\left(9\right)=\left\{...\right\}\\ i,ƯC\left(65,125\right)=Ư\left(5\right)=\left\{...\right\}\\ j,ƯC\left(9,18,72\right)=Ư\left(9\right)=\left\{...\right\}\\ k,ƯC\left(24,36,60\right)=Ư\left(12\right)=\left\{...\right\}\\ l,ƯC\left(16,42,86\right)=Ư\left(2\right)=\left\{..\right\}\)
a: 18=3^2*2; 42=2*3*7
=>ƯCLN(18;42)=3*2=6
b: 28=2^2*7
48=2^4*3
=>ƯCLN(28;48)=2^2=4
c: 24=2^3*3
36=2^2*3^2
60=2^2*3*5
=>ƯCLN(24;36;60)=12
d: 12=2^2*3
15=3*5
10=2*5
=>ƯCLN(12;15;10)=1
e: 24=2^3*3
16=2^4
8=2^3
=>ƯCLN(24;16;8)=2^3=8
h: 25=5^2; 55=5*11; 75=5^2*3
=>ƯCLN(25;55;75)=5
\(a,4\dfrac{1}{4}-2=\dfrac{17}{4}-2=\dfrac{9}{4};\dfrac{5}{8}+2\dfrac{3}{5}=\dfrac{5}{8}+\dfrac{13}{5}=\dfrac{129}{40}\\ b,4\dfrac{4}{9}:2=\dfrac{40}{9}\cdot\dfrac{1}{2}=\dfrac{20}{9};\dfrac{2}{3}+3\dfrac{1}{6}=\dfrac{2}{3}+\dfrac{19}{6}=\dfrac{23}{6}\\ c,3\dfrac{1}{5}+2=\dfrac{9}{5}+2=\dfrac{19}{5};\dfrac{3}{5}-2\dfrac{4}{5}=\dfrac{3}{5}-\dfrac{14}{5}=-\dfrac{11}{5}\)
\(d,5\dfrac{1}{7}-2=\dfrac{36}{7}-2=\dfrac{22}{7};\dfrac{4}{5}:1\dfrac{1}{5}=\dfrac{4}{5}:\dfrac{6}{5}=\dfrac{2}{3}\\ e,2\dfrac{3}{5}+1=\dfrac{13}{5}+1=\dfrac{18}{5};\dfrac{1}{4}\cdot2\dfrac{2}{3}=\dfrac{1}{4}\cdot\dfrac{8}{3}=\dfrac{2}{3}\\ f,4\dfrac{1}{3}\cdot1=\dfrac{13}{3};\dfrac{1}{2}+5\dfrac{2}{7}=\dfrac{1}{2}+\dfrac{37}{7}=\dfrac{81}{14}\)
\(1990^{10}+1990^9\)
\(=1990^9.1990+1990^9\)
\(=1990^9.1991\)
\(1991^{10}=1991^9.1991\)
Do \(1990< 1991\Rightarrow1990^9< 1991^9\)
\(\Rightarrow1990^9.1991< 1991^9.1991\)
\(\Rightarrow1990^{10}+1990^9< 1991^{10}\)
gọi :199010+19909 là A ; 199110 la B
ta có A= 1990^10+1990^9
suy ra A=1990^9 . ( 1990 + 1) = 1990^9 . 1991 mà ta có B= 1991^10 = 1991^9 . 1991
vì 1990^9 < 1991^9 suy ra A<B