CMR: \(A=(2^n-1)\left(2^n+1\right)⋮3\) với mọi \(n\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)
\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)
\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)
\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)
\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)
\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)
1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3
2) với bửu thức (II) A là tổng hai số hạng
số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5
số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5
KL
Với (I) A chia hết cho 2&3
Với (II) A chia hết cho 5
(I)&(II)=> điều bạn muốn tìm
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
a)
\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)
b)
\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)
c)
\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)
Xét n trong các trường hợp sau:
+) n = 4k (k \(\in\) N) => VT = \(\left[\frac{4k+3}{4}\right]+\left[\frac{4k+5}{4}\right]+\left[\frac{4k}{2}\right]=\left[k+0,75\right]+\left[k+1,25\right]+\left[2k\right]\)
\(=k+\left(k+1\right)+2k=4k+1=n+1\)= VP
+) n = 4k + 1 (k \(\in\) N) => VT = \(\left[\frac{4k+4}{4}\right]+\left[\frac{4k+6}{4}\right]+\left[\frac{4k+1}{2}\right]=\left[k+1\right]+\left[k+1,5\right]+\left[2k+0,5\right]\)
\(=\left(k+1\right)+\left(k+1\right)+2k=4k+2=n+1\)= VP
+) n = 4k + 2 (k \(\in\) N) => VT= \(\left[\frac{4k+5}{4}\right]+\left[\frac{4k+7}{4}\right]+\left[\frac{4k+2}{2}\right]=\left[k+1,25\right]+\left[k+1,75\right]+\left[2k+1\right]\)
\(=\left(k+1\right)+\left(k+1\right)+\left(2k+1\right)=4k+3=n+1\)= VP
+) n = 4k + 3 (k \(\in\) N) => VT = \(\left[\frac{4k+6}{4}\right]+\left[\frac{4k+8}{4}\right]+\left[\frac{4k+3}{2}\right]=\left[k+1,5\right]+\left[k+2\right]+\left[2k+1,5\right]\)
\(=\left(k+1\right)+\left(k+2\right)+\left(2k+1\right)=4k+4=n+1\)= VP
Từ các trường hợp trên => đpcm
\(\frac{n+3}{4}+\frac{n+5}{4}+\frac{n}{2}=\frac{n+3}{4}+\frac{n+5}{4}+\frac{2n}{4}=\frac{n+3+n+5+2n}{4}=\frac{4n+8}{4}=n+2\)
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a, Ta có : \(4n^2.\left(n+2\right)+4n.\left(n+2\right)\)
\(=\left(n+2\right).\left(4n^2+4n\right)\)
\(=4n.\left(n+2\right).\left(n+1\right)\)
\(=4n.\left(n+1\right).\left(n+2\right)⋮4\)
\(n.\left(n+1\right).\left(n+2\right)\) là tích của ba số liên tiếp
\(\Rightarrow n.\left(n+1\right).\left(n+2\right)⋮2\) và \(3\)
mà \(n.\left(n+1\right).\left(n+2\right)⋮\left(2.3\right)\)
Vậy \(4n^2.\left(n+2\right)+4n.\left(n+2\right)⋮24\left(đpcm\right)\)
b,
+ Thực hiện phép tính :
6n^2 + n - 1 - 6n^2 + 4n 3n + 2 2n - 1 -3n - 1 - -3n - 2 1
Ta có : \(\dfrac{6n^2+n-1}{3n+2}=2n-1+\dfrac{1}{3n+2}\)
Để \(\left(6n+n-1\right)⋮\left(3n+2\right)\) thì \(\dfrac{1}{3n+2}\in Z\)
\(\Rightarrow3n+2\inƯ\left(1\right)\)
\(\Rightarrow3n+2\in\left\{\pm1\right\}\)
Ta có bảng sau :
3n+2 | 1 | -1 |
n | \(-\dfrac{1}{3}\) | -1 |
Vậy n = -1
n={ ? }
Ta có A=(2n-1)(2n+1)
<=> A=4n-1
<=> A=(4-1)(4n-1+4n-2+...+1)
<=> A=3(4n-1+4n-2+...+1) chia hết cho 3