Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)
\(=-n^2+5n\)
Cái này nếu n=1 thì ko thỏa mãn nha bạn
b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)
\(=49n+55\)
Nếu n là số lẻ thì 49n+55 chia hết cho 2
Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn
Bài 2:Tìm x biết
\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
a,
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\\ =\left(n^2+3n-1\right)n+\left(n^2+3n-1\right)2-n^3+2\\ =n^3+3n^2-n+2n^2+6n-2-n^3+2\\ =5n^2+5n\\ =5\cdot\left(n^2+n\right)⋮5\\ \RightarrowĐpcm\)
b,
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\\ =\left(6n+1\right)n+\left(6n+1\right)5-\left(3n+5\right)2n-\left(3n+5\right)\\ =6n^2+n+30n+5-6n^2-10n-3n-5\\ =18n⋮2\\ \RightarrowĐpcm\)
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)
Bn có sai ko? Hay đề là tìm n để Biểu thức \(⋮\) 2
Ta có: \(\left(3n+5\right)\left(2n-10\right)=2\left(n-5\right)\left(3n+5\right)\) \(⋮\) 2
=> Theo đề bài phải c/m: \(\left(6n+1\right)\left(n+5\right)\) \(⋮\) 2 (*)
Xét n là số lẻ => \(\left(6n+1\right)\left(n+5\right)\) là số chẳn => Biểu thức \(⋮\) 2
Xét n là số chẳn => \(\left(6n+1\right)\left(n+5\right)\) là số lẻ => \(⋮̸\) 2
=> Để (6n+1)(n+5)−(3n+5)(2n−10) \(⋮\) 2 thì n là số lẻ, n\(\in Z\)
Biểu thức đó bằng 5m - 5n nên chia hết cho 5 với mọi m,n nguyên
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a) (n2+ 3n −1) (n + 2) − n3+ 2
= n3 + 2n2 + 3n2 + 6n - n - 2 + 2
= 5n2 + 5n
= 5(n2 + n ) chia hết cho 5
b) (6n + 1) (n + 5) − (3n + 5) (2n − 1)
= 6n2 + 30n + n + 5 - 6n2 + 3n - 10n +5
= 24n + 10
= 2(12n +5) chia hết cho 2