K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔKMC có 

MA=MK

\(\widehat{AMB}=\widehat{KMC}\)

MB=MC

Do đó: ΔAMB=ΔKMC

b: Xét tứ giác BECF có 

BE//CF

BE=CF

Do đó: BECF là hình bình hành

Suy ra: BC và EF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của FE

hay F,M,E thẳng hàng

10 tháng 12 2020

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng

a: Xet tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD=BC

b: Xét tứ giác ACBE có

M là trung điểm chung của AB và CE

=>ACBE là hình bình hành

=>AE//BC

Bài 1: 

Xét ΔABC có NQ//BC

nên AN/AB=AQ/AC(1)

Xét ΔABM có NK//BM

nên NK/BM=AN/AB(2)

Xét ΔACM có KQ//MC

nên KQ/MC=AQ/AC(3)

Từ (1), (2) và (3) suy ra NK/BM=KQ/MC

mà BM=MC

nên NK=QK

26 tháng 11 2016

Ta có hình vẽ:

A B C K H M E

a) Xét Δ ABH và Δ AKH có:

BH = KH (gt)

AHB = AHK = 90o

AH là cạnh chung

Do đó, Δ ABH = Δ AKH (c.g.c) (đpcm)

b) Xét Δ AMK và Δ CME có:

MK = ME (gt)

AMK = CME (đối đỉnh)

AM = CM (gt)

Do đó, Δ AMK = Δ CME (c.g.c)

=> AK = EC (2 cạnh tương ứng) (1)

Δ ABH = Δ AKH (câu a)

=> AB = AK (2 cạnh tương ứng) (2)

Từ (1) và (2) => EC = AB (đpcm)

c) Xét Δ AME và Δ CMK có:

AM = CM (gt)

AME = CMK (đối đỉnh)

ME = MK (gt)

Do đó Δ AME = Δ CMK (c.g.c)

=> AEM = CKM (2 góc tương ứng)

Mà AEM và CKM là 2 góc so le trong nên AE // KC hay AE // BC (đpcm)

 

26 tháng 11 2016

A B K M C E H 1 2 3 4 1 1

Giải:
a) Xét \(\Delta ABH,\Delta AKH\) có:
\(BH=HK\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHK}\)

AH: cạnh chung

\(\Rightarrow\Delta ABH=\Delta AKH\left(c-g-c\right)\)

b) Vì \(\Delta ABH=\Delta AKH\)

\(\Rightarrow AB=AK\) ( cạnh tương ứng ) (1)

Xét \(\Delta AMK,\Delta CME\) có:

\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )

\(EM=KM\left(gt\right)\)

\(\Rightarrow\Delta AMK=\Delta CME\left(c-g-c\right)\)

\(\Rightarrow EC=AK\) ( cạnh tương ứng ) (2)

Từ (1) và (2) \(\Rightarrow EC=AB\left(=AK\right)\)

c) Xét \(\Delta AME\)\(\Delta CMK\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)

\(\widehat{M_3}=\widehat{M_4}\) ( đối đỉnh )

\(KM=EM\left(gt\right)\)

\(\Rightarrow\Delta AME=\Delta CMK\left(c-g-c\right)\)

\(\Rightarrow\widehat{E_1}=\widehat{K_1}\) ( góc tương ứng )

\(\widehat{E_1}\)\(\widehat{K_1}\) ở vị trí so le trong nên AE // KC hay AE // BC

Vậy a) \(\Delta ABH=\Delta AKH\)

b) EC = AB

c) AE // BC


 

31 tháng 7 2021

vẽ cả hình giúp mik nx nhé