K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M

Ta có : AB = AC => tam giác ABC cân tại A

Ta lại có :

 B = C ( do ABC cân )

AH chung

BM = MC ( gt )

=> AMB = AMC ( c- g - c )

b) Ta có ABC cân 

MÀ M là trung điểm của BC

=> AM là đường cao của ABC

=> AM vuông với BC

13 tháng 7 2016

A B C D E M .. ..

a)  Xét \(\Delta AMB\)và \(\Delta AMC\)có:

AB = AC (gt)

AM : cạnh chung (gt)

BM = CM (gt)

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)

b) \(\Delta ABC\): có M là trung điểm BC => AM  là đường trụng trực của BC.

Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao. 

\(\Rightarrow AM\)vuông góc \(BC\)

c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:

AC = AB  (gt)>
Góc A : góc chung (gt)

Do AB = AC(gt) : BD = CE (gt)

=> AB - BD = AC - CE 

=> AD = AE.

Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)

d) \(\Delta ABC\)cân có:

BD = CE

2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔADF và ΔCDE có 

DA=DC

\(\widehat{ADF}=\widehat{CDE}\)

DF=DE

Do đó: ΔADF=ΔCDE

Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do dó: AECF là hình bình hành

Suy ra: AF//EC

12 tháng 7 2016

GIÚP MÌNH VS MN ƠI

CHỨNG MINH RẰNG 16 mũ 10 +32 chia hết cho 33

9 tháng 12 2016

khó thế

9 tháng 12 2016

có phải toaán lớp 7 k đấy. hay toán 6

15 tháng 1 2019

A B C M E D

CM: a) Xét t/giác ABM và t/giác ACM

có AB = AC (gt)

  BM = MC (gt)

 AM : chung

=> t/giác ABM = t/giác ACM (c.c.c)

b) Ta có: t/giác ABM = t/giác ACM (cmt)

=> góc AMB = góc AMC (hai góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)

=> \(2\widehat{AMB}=180^0\)

=> \(\widehat{AMB}=180^0:2=90^0\)

=> AM \(\perp\)BC ( Đpcm)

c) Xét t/giác AMD và t/giác CED

có  AD = CD (gt)

 góc ADM = góc EDC (đối đỉnh)

DM = DE (gt)

=> t/giác AMD = t/giác CED (c.g.c)

=> góc MAD = góc DCE (hai góc tương ứng)

Mà góc MAD và góc DCE ở vị trí so le trong

=> AM // EC (Đpcm)

d) Ta có : t/giác MAD = t/giác DCE (cmt)

=> AM = CE (hai cạnh tương ứng)

Do AM // EC (cmt) => góc AMC + góc MCE = 1800 (trong cùng phía)

=> góc MCE = 1800 - góc AMC = 1800 - 900 = 900 (vì góc AMB = góc AMC mà góc AMB = 900 => góc AMC = 900)

Xét t/giác AMC và t/giác MCE

có AM = CE (cmt)

 góc AMC = góc MCE (cmt)

MC : chung

=> t/giác AMC = t/giác MCE (c.g.c)

=> ME = AC (hai cạnh tương ứng)

mà MD = DE = ME/2

hay AC/2 = MD (Đpcm)

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau