Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIÚP MÌNH VS MN ƠI
CHỨNG MINH RẰNG 16 mũ 10 +32 chia hết cho 33
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{DCB}=\widehat{EBC}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của góc BAC
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
A B C D E
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
a, xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM do M là trung điểm của BC
AM là cạnh chung
=> tam giác ABM =tam giác ACM c.c.c
=> góc B = góc C do là 2 góc tương ứng
vì tam giác ABM =tam giác ACM nên góc BMA= góc AMC (2 góc tương ứng
mà ^BMA + ^AMC =180 độ do là 2 góc kề bù
mà BMA = AMC nên BMA =AMC =180 độ :2 =90 độ
=> AM vuông góc với BC
A B C M
Ta có : AB = AC => tam giác ABC cân tại A
Ta lại có :
B = C ( do ABC cân )
AH chung
BM = MC ( gt )
=> AMB = AMC ( c- g - c )
b) Ta có ABC cân
MÀ M là trung điểm của BC
=> AM là đường cao của ABC
=> AM vuông với BC
A B C D E M .. ..
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:
AB = AC (gt)
AM : cạnh chung (gt)
BM = CM (gt)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
b) \(\Delta ABC\): có M là trung điểm BC => AM là đường trụng trực của BC.
Mà \(\Delta ABC\)cân tại A nên đường trụng trực đồng thời cũng là đường cao.
\(\Rightarrow AM\)vuông góc \(BC\)
c) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
AC = AB (gt)>
Góc A : góc chung (gt)
Do AB = AC(gt) : BD = CE (gt)
=> AB - BD = AC - CE
=> AD = AE.
Vậy \(\Delta ABE=\Delta ADC\)(c.g.c)
d) \(\Delta ABC\)cân có:
BD = CE
2 đoạn thằng cách đều BC nên khi kẻ DE thì \(DE\)//\(BC\).