K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 giờ trước (18:40)

\(x^2\) - 25 - ( 5 - 7 + \(x-5\)).(7 - 4\(x\)) = 0

(\(x^2\) - 25) - (\(x-5\)).(7 - 4\(x\)) = 0

\(\left(x-5\right)\left(x+5\right)\) - (\(x\) - 5).(7 - 4\(x\)) = 0

(\(x\) - 5)(\(x\) + 5 - 7 + 4\(x\)) = 0

(\(x\) - 5){(\(x+4x\)) + (5 - 7)} = 0

(\(x\) - 5).{5\(x\) - 2} = 0

\(\left[\begin{array}{l}x-5=0\\ 5x-2=0\end{array}\right.\)

\(\left[\begin{array}{l}x=5\\ x=\frac25\end{array}\right.\)

Vậy \(x\) ∈ {\(\frac25\); 5}


\(\Leftrightarrow x^2-10x+25-4x^2-20x=0\)

\(\Leftrightarrow-3x^2-30x+25=0\)

\(\Leftrightarrow3x^2+30x-25=0\)

\(\text{Δ}=30^2-4\cdot3\cdot\left(-25\right)=900+300=1200>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-30-20\sqrt{3}}{6}=\dfrac{-15-10\sqrt{3}}{3}\\x_2=\dfrac{-15+10\sqrt{3}}{3}\end{matrix}\right.\)

23 tháng 2 2022

a) x2 + 10x + 25 - 4x2 - 20x = 0

<=> 3x2 + 10x - 25 = 0

<=> (x + 5)(3x - 5) = 0 <=> 0RB\(\left\{{}\begin{matrix}-5\\\dfrac{5}{3}\\\end{matrix}\right.\)

Vậy S = {−5;\(\dfrac{5}{3}\)}

25 tháng 2 2019

x2+10x+25-4x(x+5)=0

⇔(x+5)2-4x(x+5)=0

⇔(x+5)(x+5-4x)=0

⇔(x+5)(5-3x)=0

\(\left\{{}\begin{matrix}x+5=0\\5-3x=0\end{matrix}\right.\Leftrightarrow\left\{{} }\left\{{}\begin{matrix}x=-5\\x=\dfrac{5}{3}\end{matrix}\right.\)

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4

 

8 tháng 2 2015

Chuyển vế, dùng hằng đẳng thức thứ 3 hoặc đặt nhân tử chung đó bạn.

30 tháng 12 2022

b: =>(x-3)(2x+5)+(2x+5)(2x-5)=0

=>(2x+5)(x-3-2x+5)=0

=>(2x+5)(-x+2)=0

=>x=2 hoặc x=-5/2

c: =>3x^2-6x+15-3x^2+30x=0

=>24x+15=0

=>x=-5/8

2 tháng 8 2016

\(a,\left(x^2-25\right)-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5-x+5\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(\text{Vậy tập nghiệm của phương trình là }S=\left\{5\right\}\)
\(b,x^3-4x^2-9x+36=0\)
\(\Leftrightarrow\left(x^3-4x^2\right)-\left(9x-36\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-3=0\\x+3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=3\\x=-3\end{array}\right.\)
\(\text{Vậy tập nghiệm của phương trình là }S=\left\{4;\pm3\right\}\)

 

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

NV
4 tháng 4 2021

Đặt \(x^2-4x+5=t\ge1\)

\(\Rightarrow\dfrac{5}{t}-\left(t-5\right)-1=0\)

\(\Leftrightarrow-t^2+4t+5=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=5\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=5\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

2 tháng 6 2021

em                                                                                                                                                                                                            ko

biết