K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

\(a,\left(x^2-25\right)-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-5-x+5\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
\(\text{Vậy tập nghiệm của phương trình là }S=\left\{5\right\}\)
\(b,x^3-4x^2-9x+36=0\)
\(\Leftrightarrow\left(x^3-4x^2\right)-\left(9x-36\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-3=0\\x+3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=3\\x=-3\end{array}\right.\)
\(\text{Vậy tập nghiệm của phương trình là }S=\left\{4;\pm3\right\}\)

 

12 tháng 10 2020

a) 2x (x-5) -(x2-10x +25)=0

\(\Leftrightarrow\)2x(x-5)-(x-5)2=0

\(\Leftrightarrow\)(x-5)(2x-x+5)=0

\(\Leftrightarrow\)(x-5)(x+5)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

b) x2 - 9 +3x(x+3) = 0

\(\Leftrightarrow\)(x2 - 9) +3x(x+3) =0

\(\Leftrightarrow\)(x-3)(x+3)+3x(x+3)=0

\(\Leftrightarrow\)(x+3)(x-3+3x)=0

\(\Leftrightarrow\)(x+3)(4x-3)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x+3=0\\4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-3\\4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{3}{4}\end{matrix}\right.\)

c) x3 - 16x = 0

\(\Leftrightarrow\)x(x2-16)=0

\(\Leftrightarrow\)x(x-4)(x+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

d) (2x+3)(x-2) - (x2 -4x+4) = 0

\(\Leftrightarrow\)(2x+3)(x-2) -(x-2)2=0

\(\Leftrightarrow\)(x-2)(2x+3-x+2)=0

\(\Leftrightarrow\)(x-2)(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

e) 9x2 -(x2 -2x +1)=0

\(\Leftrightarrow\)(3x)2-(x-1)2=0

\(\Leftrightarrow\)(3x-x+1)(3x+x-1)=0

\(\Leftrightarrow\)(2x+1)(4x-1)=0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+1=0\\4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=-1\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

f)x3-4x2 -9x +36 = 0

\(\Leftrightarrow\)(x3-9x)-(4x2-36)=0

\(\Leftrightarrow\)x(x2-9)-4(x2-9)=0

\(\Leftrightarrow\)(x-4)(x2-9)=0

\(\Leftrightarrow\)(x-4)(x-3)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

g) 3x - 6 = (x-1).(x-2)

\(\Leftrightarrow\)3(x-2)=(x-1)(x-2)

\(\Leftrightarrow\)x-1=3

\(\Leftrightarrow\)x=4

i) (x-2).(x+2) +(2x+1)2 =-5x.(x-3) =5 (?? đề sao vậy ??)

k) x2 -1 = (x-1).(2x+3)

\(\Leftrightarrow\)(x-1)(x+1)=(x-1)(2x+3)

\(\Leftrightarrow\)x+1=2x+3

\(\Leftrightarrow\)x-2x=3-1

\(\Leftrightarrow\)-x=2

\(\Leftrightarrow\)x=-2

l) (2x-1)2 +(x+3).(x-3) -5x(x-2)=6

\(\Leftrightarrow\)4x2-4x+1+x2-9-5x2+10x=6

\(\Leftrightarrow\)6x-8=6

\(\Leftrightarrow\)6x=14

\(\Leftrightarrow\)x=\(\frac{7}{3}\)

3 tháng 7 2016

a, 2(x+5)=x2+5x

=> 2x+10=x2+5x

=> 0=x2+5x-2x-10

=> x2+3x-10=0

=> x2+5x-2x-10=0

=> x(x+5)-2(x+5)=0

=> (x-2)(x+5)=0

=> x-2 =0 hoặc x+5 =0

=> x=2 hoặc x=-5

b, 4x2-25=(2x-5)(2x+7)

=> (2x)2-52=(2x-5)(2x+7)

=> (2x-5)(2x+5) - (2x-5)(2x+7)=0

=> (2x-5)(2x+5-2x-7)=0

=> (2x-5)(-2)=0

=> 2x-5=0

=> 2x=5

=> x =2,5

c, x3+x=0

=>x(x2+1)=0

=> x=0 hoặc x2+1=0

Mà x2+1 >= 1 nên x=0

d, Hình như là thiếu đề

3 tháng 7 2016

a,=2x+10=x2+5x

   =-x2-2x-5x+10=0

   =-x2-7x+10=0

   Delta=(-7)2-4.-1.10=89

x1=7+căn89/2      x2=7-căn 89/2

CÁC CÂU KHÁC TỰ GIẢI NHA bạn

21 tháng 9 2017

a) \(x^3-4x^2-9x+36=0\Leftrightarrow x^3-7x^2+12x+3x^2-21x+36=0\) \(x\left(x^2-7x+12\right)+3\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x-4x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\Leftrightarrow\left(x+3\right)\left(x-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\x-4=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=4\\x=3\end{matrix}\right.\) vậy \(x=-3;x=4;x=3\)

b) \(5x^2-4\left(x^2-2x+1\right)-5=0\) \(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\Leftrightarrow x^2-x+9x-9=0\)

\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\) vậy \(x=-9;x=1\)

c) đề có sai o bn

d) \(x^3-3x+2=0\Leftrightarrow x^3+x^2-2x-x^2-x+2=0\)

\(\Leftrightarrow x\left(x^2+x-2\right)-\left(x^2+x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x\left(x-1\right)+2\left(x-1\right)\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-2\\x=1\end{matrix}\right.\)

vậy \(x=1;x=-2\)

21 tháng 9 2017

1. \(x^3-4x^2-9x+36=0\)

\(\Rightarrow x^2.\left(x-4\right)-9\left(x-4\right)=0\)

\(\Rightarrow\left(x^2-9\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\Rightarrow x\in\left\{3;-3\right\}\\x-4=0\Rightarrow x=4\end{matrix}\right.\)

Vậy ..........

2. \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Rightarrow5x^2-4\left(x^2-1\right)-5=0\)

\(\Rightarrow5x^2-4x^2+4-5=0\)

\(\Rightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=\pm1\)

Vậy .......

3. \(x^3-3x+2=0\)

\(\Rightarrow x^3-4x+x+2=0\)

\(\Rightarrow x.\left(x^2-4\right)+x+2=0\)

\(\Rightarrow x.\left(x-2\right).\left(x+2\right)+x+2=0\)

\(\Rightarrow\left(x+2\right).\left(x^2-2x+1\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)=0\\\left(x-1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

Vậy .......

28 tháng 1 2017

trên gg có

25 tháng 2 2018

bạn có thể gửi cho mih link trang đó đc k

17 tháng 8 2019

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

17 tháng 8 2019

\(x^5-9x=0\)

\(\Leftrightarrow x\left(x^4-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^4-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt[4]{9}\end{cases}}\)

1 tháng 7 2017

a) \(x^3-16x=0\)

<=> \(x\left(x^2-16\right)=0\)

<=> \(x\left(x-4\right)\left(x+4\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=-4;4\end{cases}}\)

b) \(2x^3-50x=0\)

<=> \(2x\left(x^2-25\right)=0\)

<=> \(2x\left(x-5\right)\left(x+5\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=5;-5\end{cases}}\)

c) \(x^3-4x^2-9x+36=0\)

<=> \(\left(x^3-4x^2\right)-\left(9x-36\right)=0\)

<=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)

<=> \(\left(x-4\right)\left(x^2-9\right)=0\)

<=> \(\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

<=> \(\orbr{\begin{cases}x=-3;3\\x=4\end{cases}}\)

1 tháng 7 2017

a)\(x^3-16x=0\)

   \(x\left(x^2-4^2\right)=0\)

     \(x\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

       x + 4 =0                  x = -4

b)Giống ở câu a

c)\(x^3-4x^2-9x+36=0\)

    \(x^2\left(x-4\right)+9\left(x-4\right)=0\)

    \(\left(x^2+9\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x^2+9=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\xkoTM\end{cases}}\)

    

3 tháng 2 2017

a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)

=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)

=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)

=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)

3 tháng 2 2017

\(b...x^3-19x+30=0\)

\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)

=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)

=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)

=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)

=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)

Vậy x=-5;2;3

21 tháng 8 2020

a/\(\left(4x-1\right)\left(x+5\right)=x^2-25\Leftrightarrow4x^2+20x-x-5=x^2-25\Leftrightarrow3x^2+19x+20\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\-5\end{matrix}\right.\)

b/

\(2x^3-6x^2=x^2-3x\Leftrightarrow2x^3-6x^2-x^2+3x=0\Leftrightarrow2x^2\left(x-3\right)-x\left(x-3\right)=0\Leftrightarrow\left(2x^2-x\right)\left(x-3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}\\3\\0\end{matrix}\right.\)

c/\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left[\left(x^2+6x+9\right)x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\frac{x}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3+6x^2+\frac{35}{4}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)

d/\(\left(x-1\right)^2=\left(2x+5\right)^2\Leftrightarrow\left(x-1\right)^2-\left(2x+5\right)^2=0\Leftrightarrow\left(x-1+2x+5\right)\left(x-1-2x-5\right)=0\Leftrightarrow\left(3x+4\right)\left(-x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+4=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\0\\-6\end{matrix}\right.\)