Tính nhanh:
3/1+3/1+2+3/1+2+3+3/1+2+3+4+...+3/1+2+3+...+100. Giai thich ro rang nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(=3\left(\frac{1}{\frac{1\cdot2}{2}}+\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+...+\frac{1}{\frac{100\cdot101}{2}}\right)\)
\(=3\left(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+...+\frac{2}{100\cdot101}\right)\)
\(=6\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\right)\)
\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6\left(1-\frac{1}{101}\right)=6-\frac{6}{101}=\frac{606-6}{101}=\frac{600}{101}\)
Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)
\(=6,3.1,2-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.1,2-6,3.1,2\)
\(=0\)
\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
3/1 + 3/1+2 + 3/1+2+3 + 3/1+2+3+4 + ... + 3/1+2+3+4+...+100
= 3 × (1/0+1 + 1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+4+...+100)
= 3 × (1/(1+0)×2:2 + 1/(1+2)×2:2 + 1/(1+3)×3:2 + 1/(1+4)×4:2 + ... + 1/(1+100)×100:2)
= 3 × (2/1×2 + 2/2×3 + 2/3×4 + 2/4×5 + ... + 2/100×101)
= 3 × 2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/100×101)
= 6 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/100 - 1/101)
= 6 × (1 - 1/100)
= 6 × 100/101
= 600/101
S=\(3\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(S=3\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\right)\)
\(S=3.\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\right)\)
\(S=\frac{3}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(S=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(S=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(S=\frac{3}{2}.\frac{100}{101}=\frac{150}{101}\)
\(B=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+4+...+100}\)
\(B=3.\left(\frac{1}{\left(1+0\right).2:2}+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+100\right).100:2}\right)\)
\(B=3.\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\right)\)
\(B=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(B=6.\left(1-\frac{1}{101}\right)\)
\(B=6.\frac{100}{101}=\frac{600}{101}\)
5,Ta có
A=1/2+1/2^2+1/2^3+...+1/2^100
2A=1+1/2+1/2^2+1^2/3+...+1/2^99
2A-A=(1+1/2+1/2^2+1^2/3+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)
A=1-1/2^100
Olm chào em. Đây là toán nâng cao chuyên đề tính nhanh dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
A = \(\frac31\) + \(\frac{3}{1+2}\) + \(\frac{3}{1+2+3}\) + ... + \(\frac{3}{1+2+3\ldots+100}\)
1 + 2 = 3 = 3 x 2 : 2
1 + 2 + 3 = 6 = 4 x 3 : 2
1 + 2+ 3 + 4 = 10 = 5 x 4 : 2
..........................................................
1+ 2 + 3 + 4 +...+ 100 = 101 x 100 : 2
A = \(\frac31\) + \(\frac{3}{3\times2:2}\) + \(\frac{3}{4\times3:2}\) + .... + \(\frac{3}{101\times100:2}\)
A = \(\frac62\) + \(\frac{6}{3\times2}\) + \(\frac{6}{3\times4}\) + ... + \(\frac{6}{100\times101}\)
A = 6 x (\(\frac{1}{1\times2}\) + \(\frac{1}{2\times3}\) + ... + \(\frac{1}{100\times101}\))
A = 6 x (\(\frac11\) - \(\frac12\) + \(\frac12\) - \(\frac13\) + ... + \(\frac{1}{100}\) - \(\frac{1}{101}\))
A = 6 x (\(\frac11\) - \(\frac{1}{101}\))
A = 6 x \(\frac{100}{101}\)
A =\(\frac{600}{101}\)
em cảm ơn ạ