Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(1/1*3 + 1/3*5 + 1/5*7 + 1/7*9 + 1/9*11) * y = 2/3
=> (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11) * y = 2/3
=> (1 - 1/11) * y = 2/3
=> 10/11 * y = 2/3
=> y = 11/15
\(\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}\right)\cdot y=\frac{2}{3}\)
\(\left[\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\right)\right]\cdot y=\frac{2}{3}\)
\(\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\right]\cdot y=\frac{2}{3}\)
\(\left[\frac{1}{2}\left(1-\frac{1}{11}\right)\right]\cdot y=\frac{2}{3}\)
\(\frac{1}{2}\cdot\frac{10}{11}\cdot y=\frac{2}{3}\)
\(\frac{5}{11}\cdot y=\frac{2}{3}\)
\(y=\frac{2}{3}\div\frac{5}{11}=\frac{22}{15}\)

Câu hỏi của NGÂN LILY - Toán lớp 5 - Học toán với OnlineMath Em tham khảo cách làm tại link này nhé!

Đặt A = \(\frac{\frac{1}{2}}{1+2}+\frac{\frac{1}{2}}{1+2+3}+...+\frac{\frac{1}{2}}{1+2+3+....+100}\)
= \(\frac{1}{2}\left(\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+...+\frac{1}{100.101:2}\right)\)
= \(\frac{1}{2}\left(\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{100.101}\right)\)
= \(\frac{1}{2}.2\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)\)
= 1\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{100}-\frac{1}{101}\right)\)
= \(\frac{1}{2}-\frac{1}{101}=\frac{101}{202}-\frac{2}{202}=\frac{99}{202}\)

\(A=\frac{3}{1}+\frac{3}{\frac{\left(2+1\right).2}{2}}+\frac{3}{\frac{\left(3+1\right).3}{2}}+....+\frac{3}{\frac{\left(100+1\right).100}{2}}\)
\(\Rightarrow A=\frac{3}{1}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{3}{1}+6.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{3}{1}+\frac{6.99}{202}=\frac{297}{101}+\frac{3}{1}=\frac{600}{101}\)
kết quả k bik có sai k

\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+.....+\frac{3}{1+2+...+100}\)
\(=3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\)
\(=\frac{2}{2}.\left(3+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{5050}\right)\)
\(=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(=6.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6.\left(1-\frac{1}{101}\right)\)
\(=6.\frac{100}{101}=\frac{600}{101}\)
Vậy \(A=\frac{600}{101}\)
\(A=3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(A=\frac{3.2}{2}+\frac{3.2}{\left(1+2\right).2}+\frac{3.2}{\left(1+2+3\right).2}+...+\frac{3.2}{\left(1+2+...+100\right).2}\)
\(A=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{10100}\)
\(A=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(A=6\cdot\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=6\cdot\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)
Vay A = ........

\(A=5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+...+100}\)
A = \(5+\frac{5}{1+2}+\frac{5}{1+2+3}+...+\frac{5}{1+2+3+..+100}\)
\(=5x\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=5x\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)
\(=2x5x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(=10x\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\right)\)
\(=10x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=10x\left(1-\frac{1}{101}\right)\)
\(=10x\frac{100}{101}\)
\(=\frac{1000}{101}\)
Olm chào em. Đây là toán nâng cao chuyên đề tính nhanh dãy số có quy luật, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
A = \(\frac31\) + \(\frac{3}{1+2}\) + \(\frac{3}{1+2+3}\) + ... + \(\frac{3}{1+2+3\ldots+100}\)
1 + 2 = 3 = 3 x 2 : 2
1 + 2 + 3 = 6 = 4 x 3 : 2
1 + 2+ 3 + 4 = 10 = 5 x 4 : 2
..........................................................
1+ 2 + 3 + 4 +...+ 100 = 101 x 100 : 2
A = \(\frac31\) + \(\frac{3}{3\times2:2}\) + \(\frac{3}{4\times3:2}\) + .... + \(\frac{3}{101\times100:2}\)
A = \(\frac62\) + \(\frac{6}{3\times2}\) + \(\frac{6}{3\times4}\) + ... + \(\frac{6}{100\times101}\)
A = 6 x (\(\frac{1}{1\times2}\) + \(\frac{1}{2\times3}\) + ... + \(\frac{1}{100\times101}\))
A = 6 x (\(\frac11\) - \(\frac12\) + \(\frac12\) - \(\frac13\) + ... + \(\frac{1}{100}\) - \(\frac{1}{101}\))
A = 6 x (\(\frac11\) - \(\frac{1}{101}\))
A = 6 x \(\frac{100}{101}\)
A =\(\frac{600}{101}\)
em cảm ơn ạ