‚
Tìm số tự nhiên n biết 2^1 +2^2 +2^3 +···+2^n = 2046
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)

b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
2\(^1\) + 2\(^2\) + 2\(^3\) + ... + 2\(^{n}\) = 2046
Đặt A = 2\(^1\) + 2\(^2\) + 2\(^3\) + ... + 2\(^{n}\)
2A = 2\(^2\) + 2\(^3\) + 2\(^4\) + ... + 2\(^{n+1}\)
2A - A = (2\(^2\) + 2\(^3\) + 2\(^4\) + ..+2\(^{n+1}\))- (2\(^1\) + 2\(^2\) + 2\(^3\) + ... + 2\(^{n}\) )
A = 2\(^2\) + 2\(^3\) + 2\(^4\) + ..+2\(^{n+1}\)- 2\(^1\) - 2\(^2\) - 2\(^3\) - ... - 2\(^{n}\)
A = (2\(^2\) - 2\(^2\)) + (2\(^3\) - 2\(^3\)) +..+ (\(2^{n}\) - 2\(^{n}\)) + (\(2^{n+1}\) - 2\(^1\))
A = 0 + 0 + 0 +...+ 0 + (\(2^{n+1}-2^1\))
A = 2\(^{n+1}\) - 2\(^1\)
Theo bài ra ta có: 2\(^{n+1}\) - 2\(^1\) = 2046
2\(^{n+1}\) - 2 = 2046
2\(^{n+1}\) = 2046 + 2
2\(^{n+1}\) = 2048
2\(^{n+1}\) = 2\(^{11}\)
n + 1 = 11
n = 11 - 1
n = 10
Vậy n = 10