Cho n điểm, trong đó không có 3 điểm nào thẳng hàng, cứ qua 2 điểm vẽ một đường thẳng. Hỏi có bao nhiêu đường thẳng tạo thành?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Cứ 1 điểm tạo với 9 điểm còn lại 9 đường thẳng
Với 10 điểm ta có : 9. 10 = 90 đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Số đường thẳng được tạo là : 90 : 2 = 45 ( đường thẳng)
b, Cứ 1 điểm tại với n - 1 điểm còn lại số đường thẳng là:
n - 1 đường thẳng
Với n điểm ta có (n-1).n đường thẳng
Theo cách tính trên mỗi đường thẳng được tính hai lần
Vậy với n điểm trong đó không có 3 điểm nào thẳng hàng thì sẽ tạo được số đường thẳng là: (n-1).n:2
Theo bài ra ta có: (n-1).n : 2 = 28
(n-1).n = 56
(n-1).n = 7 x 8
n = 8
Kết luận n = 8 thỏa mãn yêu cầu đề bài
a) Chọn một điểm. Qua điểm đó và từng điểm trong 99 điểm còn lại, ta vẽ được 99 đường thẳng. Làm như vậy với 100 điểm, ta được 99. 100 đường thẳng. Nhưng mỗi đường thẳng đã được tính hai lần, do đó tất cả chỉ có 99. 100 : 2 = 4950 đường thẳng.
a)Chọn 1 điểm trong số 20 điểm đã cho.Qua điểm đó, với lần lượt từng điểm trong 19 điểm còn lại ta vẽ được 19 đường thẳng.Cứ như vậy với 20 điểm ta vẽ được 20.19 đường thẳng nhưng mỗi đường thẳng đã được tính hai lần, do đó có tất cả (20.19):2=190 (đường thẳng)
b)Cho điểm n trong đó không có bất kì 3 điểm nào thẳng hàng.Cứ qua 2 điểm ta vẽ một đường thẳng, đường thẳng vẽ được là n.(n-1).Nếu qua 3 điểm không thẳng hàng ta vẽ được 3.2:2=3(đường thẳng), số đường thẳng giảm đi là 3-1=2
Vậy trong 20 điểm mà có đúng 3 điểm thẳng hàng thì ta vẽ được 190-2=188(đường thẳng)
NHỚ TÍCH NHÁ
Ta có\(n\cdot\left(n-1\right):2=120\)
\(n\cdot\left(n-1\right)=120\cdot2\)
\(n\cdot\left(n-1\right)=240\)
\(n\cdot\left(n-1\right)\)\(=16\cdot15\)
\(\)Vậy n=16(điểm)
k mk nhé
nhanh len day thu 2 minh fhai KT roi!