Cho đường tròn tâm O đường kính AB bán kính R. Tiếp tuyến tại M bất kì trên đường tròn (O) cắt các tiếp điểm tại A và B lần lượt tại C và D. Tìm vị trí của M để chu vi tam giác COD là nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé :
1.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\)
\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC
Tương tự DMOB nội tiếp đường tròn đường kính OD
2 . Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)
Tương tự DM = DB , OD là phân giác ^BOM
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)
\(\Rightarrow OC\perp OD\)
Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)
Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)
3.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CO\perp AM=E\) là trung điểm AM
Tương tự \(OD\perp BM=F\) là trung điểm BM
\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)
Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)
\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM
\(\Rightarrow EFNO\) nội tiếp
\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)
Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO )
\(\Rightarrow EFON\) là hình thang cân
a/
Xét tg vuông OAC và tg vuông OMC có
OA=OM=R
OC chung
=> tg OAC = tg OMC (Hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{AOC}=\widehat{MOC}=\dfrac{\widehat{AOM}}{2}\)
Tương tự ta cũng có
tg OBD = tg OMD \(\Rightarrow\widehat{BOD}=\widehat{MOD}=\dfrac{\widehat{BOM}}{2}\)
\(\Rightarrow\widehat{MOC}+\widehat{MOD}=\widehat{COD}=\dfrac{\widehat{AOM}}{2}+\dfrac{\widehat{BOM}}{2}=\dfrac{180^o}{2}=90^o\)
b/
AB+BD nhỏ nhất khi \(M\equiv B\)
a: Gọi H là giao điểm của AO và BC
Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có \(OA^2=OB^2+BA^2\)
=>\(BA^2+3^2=5^2\)
=>\(BA^2+9=25\)
=>\(BA^2=25-9=16\)
=>BA=4(cm)
AB=AC
mà AB=4cm
nên AC=4cm
Xét ΔBAO vuông tại B có BH là đường cao
nên \(BH\cdot OA=OB\cdot BA\)
=>\(BH\cdot5=3\cdot4=12\)
=>BH=12/5=2,4(cm)
H là trung điểm của BC
=>BC=2*BH=2*2,4=4,8(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=4+4+4,8=12,8\left(cm\right)\)
b: Xét (O) có
NM,NB là tiếp tuyến
Do đó: NM=NB và ON là phân giác của góc MOB
ON là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{NOM}\)
Xét (O) có
QM,QC là tiếp tuyến
Do đó: QM=QC và OQ là phân giác của \(\widehat{MOC}\)
OQ là phân giác của góc MOC
=>\(\widehat{MOC}=2\cdot\widehat{MOQ}\)
Chu vi tam giác AQN là:
\(C_{ANQ}=AN+NQ+AQ\)
\(=AN+NM+MQ+AQ\)
\(=AN+NB+QC+AQ\)
=AB+AC
=4+4
=8(cm)
c: Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)
nên \(\widehat{BOA}\simeq53^0\)
Xét (O) có
AB,AC là tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}\simeq106^0\)
Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)
=>\(2\cdot\left(\widehat{NOM}+\widehat{QOM}\right)=\widehat{BOC}\)
=>\(2\cdot\widehat{NOQ}=\widehat{BOC}\)
=>\(\widehat{NOQ}=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\simeq53^0\)