Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:
A O 2 = A B 2 + B O 2
Suy ra: A B 2 = A O 2 - B O 2 = 5 2 - 3 2 = 16
AB = 4 (cm)
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
DB = DM
EM = EC
Chu vi của tam giác ADE bằng:
AD + DE + EA = AD + DB + AE + EC
= AB + AC = 2AB = 2.4 = 8 (cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) C/m tg ABCO nội tiếp:
+) Ta có: góc ACO = 90•( vì AC là tiếp tuyến đg tròn (O))
góc ABO = 90•( vì AB là tiếp tuyến đg tròn (O))
+) Xét tg ABOC có: góc ACO+ góc ABO=90•+90•=180•
Mà 2 góc ở vị trí đối nhau
=> tg ABOC nội tiếp đg tròn(dhnb)
b) C/m: CD// AO:
+) Vì AB và AC là 2 tiếp tuyến cắt nhau tại A(gt) => AO là đg pg của góc COB( t/c 2 tiếp tuyến cắt nhau)
=> AO là pg của tam giác COB
Mà tam giác COB cân tại O( OB=OC=R)
=> OA là đg cao của tam giác COB( t/c tam giác cân)
=> OA vuông góc vs CB( t/c) (1)
+) Xét (O) ta có:
BD là đg kính( gt)
góc BCD là góc nội tiếp chắn cung BD
=> góc BCD= 90• ( t/c góc nội tiếp chắn nửa đg tròn)
=> CD vuông góc vs CB(t/c) (2)
Từ(1) và (2) suy ra: CD// OA( từ vuông góc đến song song).
mk chưa ra câu c nên xin lỗi bn nhiều nhé....
a: Gọi H là giao điểm của AO và BC
Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có \(OA^2=OB^2+BA^2\)
=>\(BA^2+3^2=5^2\)
=>\(BA^2+9=25\)
=>\(BA^2=25-9=16\)
=>BA=4(cm)
AB=AC
mà AB=4cm
nên AC=4cm
Xét ΔBAO vuông tại B có BH là đường cao
nên \(BH\cdot OA=OB\cdot BA\)
=>\(BH\cdot5=3\cdot4=12\)
=>BH=12/5=2,4(cm)
H là trung điểm của BC
=>BC=2*BH=2*2,4=4,8(cm)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=4+4+4,8=12,8\left(cm\right)\)
b: Xét (O) có
NM,NB là tiếp tuyến
Do đó: NM=NB và ON là phân giác của góc MOB
ON là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{NOM}\)
Xét (O) có
QM,QC là tiếp tuyến
Do đó: QM=QC và OQ là phân giác của \(\widehat{MOC}\)
OQ là phân giác của góc MOC
=>\(\widehat{MOC}=2\cdot\widehat{MOQ}\)
Chu vi tam giác AQN là:
\(C_{ANQ}=AN+NQ+AQ\)
\(=AN+NM+MQ+AQ\)
\(=AN+NB+QC+AQ\)
=AB+AC
=4+4
=8(cm)
c: Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)
nên \(\widehat{BOA}\simeq53^0\)
Xét (O) có
AB,AC là tiếp tuyến
Do đó: OA là phân giác của góc BOC
=>\(\widehat{BOC}=2\cdot\widehat{BOA}\simeq106^0\)
Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)
=>\(2\cdot\left(\widehat{NOM}+\widehat{QOM}\right)=\widehat{BOC}\)
=>\(2\cdot\widehat{NOQ}=\widehat{BOC}\)
=>\(\widehat{NOQ}=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\simeq53^0\)