cho hình vẽ . chững minh MN = NK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý pytago vào \(\Delta MNK\) vuông tại M có:
\(NK^2=NM^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK=15\)
b) Xét \(\Delta NMK\) vuông tại M và \(\Delta IMK\) vuông tại M có:
MK chung
\(NM=IM\left(gt\right)\)
\(\Rightarrow\Delta NMK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)
hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\) vuông tại A và \(\Delta MBK\) vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\) (c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\) cân tại K
\(\Rightarrow\) \(\widehat{KAB}=\widehat{KBA}\)
Áp dụng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\dfrac{180^o-\widehat{NKI}}{2}\left(1\right)\) (đoạn này hơi tắt)
Do \(\Delta NMK=\Delta IMK\)
\(\Rightarrow NK=IK\Rightarrow\Delta NKI\) cân tại K
\(\Rightarrow\widehat{KNI}=\widehat{KIN}\)
Áp dng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KNI}+\widehat{KIN}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KNI}=\dfrac{180^o-\widehat{NKI}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{KNI}\)
mà 2 góc này ở vị trí đồng vị nên AB // NI .
a) Ta có: ΔMNK vuông tại M.
\(\Rightarrow NK^2=MN^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK^8=225\)
\(\Rightarrow NK=\sqrt{225}=15\left(cm\right)\)
b) Vì MI là tia đối của tia MN.
\(\Rightarrow\) 3 điểm N, M, I thẳng hàng.
\(\Rightarrow\widehat{M_{12}}=\widehat{M_{34}}\)
Xét ΔMNK và ΔMIK có:
+ MN = MI (gt)
+ \(\widehat{M_{12}}=\widehat{M_{34}}\) (cmt)
+ MK là cạnh chung.
\(\Rightarrow\) ΔMNK = ΔMIK (c-g-c)
\(\Rightarrow\) NK = IK (2 cạnh tương ứng)
\(\Rightarrow\) ΔKNI cân tại K.
Xét ΔMAK và ΔMBK có:
+ \(\widehat{K_1}=\widehat{K_2}\) (ΔMNK = ΔMIK)
+ MK là cạnh chung.
+ \(\widehat{A_1}=\widehat{B_1}=90^o\) (kẻ vuông góc)
\(\Rightarrow\) ΔMAK = ΔMBK (cạnh huyền - góc nhọn)
a: NK=15cm
b: Xét ΔKNI có
KM là đường cao
KM là đường trung tuyến
Do đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
KM chung
góc AKM=góc BKM
Do đo: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//NI
a)Ta có :
Vì Δ MNK vuông M nên NK2 = MN2 + MK2
⇒NK2 = 92 + 122
⇒NK2 = 81 + 144
⇒NK2 = 225
Vậy NK = 15
b)Theo CM trên, ta có :
NK2 = MN2 + MK2
Mà IK2 = MI2 + MK2
MN = MI (gt) ; MK chung
⇒MN2+MK2 = MI2+MK2 hay NK=IK
⇒ΔKNI cân N
c)Ta có :
MK chung(1)
\(\widehat{MAK}=\widehat{MBK}=90^o\)(2)
Xét Δ MNK và Δ MIK, ta có :
MK chung
MI = MN
NK = IK
⇒Δ MNK = Δ MIK(c.c.c)
⇒\(\widehat{MKN}=\widehat{MKI}\)(hai góc tương ứng)(3)
Từ (1), (2) và (3) ⇒ ΔMAK=ΔMBK(cạnh huyền-góc nhọn)
d)Ta thấy : Δ MNK vuông M hay KM ⊥NI+
Gọi điểm C là điểm giao giữa AB và KM, ta có :
\(\widehat{KCA}+\widehat{KCB}=180^o\)*
Xét ΔKCA và ΔKCB, ta có :
AK=BK(ΔMAK=ΔMBK)
CK chung
\(\widehat{CKA}=\widehat{CKB}\)(Δ MNK = Δ MIK)
⇒ΔKCA = ΔKCB(c.g.c)
⇒\(\widehat{CAK}=\widehat{CBK}\)(hai góc tương ứng)**
Từ * và ** ⇒ \(\widehat{CAK}=\widehat{CBK}=90^o\) hay KM ⊥ AB++
Từ + và ++ ⇒ AB // NI
a) Ta có: \(\widehat{NCK}=\widehat{ACB}\) (đối đỉnh)
Xét 2 tam giác vuông ΔBHM và ΔCKN ta có:
Cạnh huyền: BM = CN (GT)
\(\widehat{MBH}=\widehat{NCK}\left(=\widehat{ACB}\right)\)
=> ΔBHM = ΔCKN (c.h - g.n)
=> MH = NK (2 cạnh tương ứng)
b) Ta có: \(\left\{{}\begin{matrix}MH\perp BC\\NK\perp BC\end{matrix}\right.\left(GT\right)\)
=> MH // NK
\(\Rightarrow\widehat{HMI}=\widehat{KNI}\) (2 góc so le trong)
Xét ΔMHI và ΔNKI ta có:
\(\widehat{MHI}=\widehat{NKI}\left(=90^0\right)\)
MH = NK (cmt)
\(\widehat{HMI}=\widehat{KNI}\left(cmt\right)\)
=> ΔMHI = ΔNKI (g - c - g)
=> MI = NI (2 cạnh tương ứng)
=> I là trung điểm của MN
a) Áp dụng định lí pi-ta-go vào \(\Delta MNK\)vuông tại M có:
\(NK^2=NM^2+MK^2\Rightarrow NK^2=9^2+12^2\Rightarrow NK=15\)
b) Xét \(\Delta NMK\)vuông tại M và \(\Delta IMK\)vuông tại M có:
MK chung
NM=IM (gt)
\(\Rightarrow\Delta MNK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\)vuông tại A và \(\Delta MBK\)vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\)(c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\)cân tại K
\(\Rightarrow\widehat{KAB}=\widehat{KBA}\)
Áp dụng tính chất tổng 3 góc trong 1 tam giác có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\frac{180^o-\widehat{NKI}}{2}\left(1\right)\)
tới đây bn tự làm tiếp
a: BD=5cm
b: Xég ΔBCD vuông tại C và ΔCFB vuông tại F có
góc BDC=góc CBF
Do đó:ΔBCD đồng dạg với ΔCFB
Suy ra: BC/CF=BD/CB
=>3/CF=5/3
=>CF=1,8(cm)