K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2017

Ta co lx-2l \(\ge\)x-2

lx-5l=l5-xl\(\ge\)5-x

=> A=lx-2l+lx-5l\(\ge\)3

Dấu ''=" xảy ra khi  \(\hept{\begin{cases}x-2\ge0\\x-5\le0\end{cases}}\)

=> 2\(\le\)x\(\le\)5

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

21 tháng 8 2020

A = x2 + 5x + 7 

   = ( x2 + 5x + 25/4 ) + 3/4

   = ( x + 5/2 )2 + 3/4

\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinA = 3/4 <=> x = -5/2

B = 6x - x2 - 5

   = -( x2 - 6x + 9 ) + 4

   = -( x - 3 )2 + 4

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxB = 4 <=> x = 3

C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

   = [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

   = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

   = ( x2 + 5x )2 - 36

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> x = 0 hoặc x = -5

=> MinC = -36 <=> x = 0 hoặc x = -5

22 tháng 8 2020

Thank bn.😊😉

8 tháng 11 2018

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

17 tháng 9 2018

\(A=x^2-2x-x+2+3=x\left(x-2\right)-\left(x-2\right)+3=\left(x-2\right).\left(x-1\right)+3\)

Ta có \(x\ge2\Rightarrow x-2\ge0\)

\(x\ge2\Rightarrow x-1\ge1\)

Do đó \(\left(x-2\right).\left(x-1\right)\ge0\)

\(\Rightarrow A=\left(x-2\right)\left(x-1\right)+3\ge3\)

Vậy GTNN của A= 3 khi x-2=0 hay x=2

25 tháng 7 2015

Mới sửa đề mà?

Ta có A = |x - 5| + |x + 2| = |5 - x| + |-x - 2| (2 số là số đối của nhau)

|5 - x| \(\ge\) 5 - x. Dấu "=" xảy ra khi 5 - x  \(\ge\) 0 => x \(\le\) 5

|x + 2| \(\ge\) x + 2. Dấu "=" xảy ra khi x + 2 \(\ge\) 0 => x \(\ge\) -2

=> |5 - x| + |x + 2| \(\ge\) (5 - x) + (x + 2) = 7

Vậy min A = 7 khi -2 \(\le\) x \(\le\) 5

25 tháng 7 2015

Áp dụng : |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi a.b \(\ge\) 0

ta có: A = |x - 5| + |x + 2| = |5 - x| + |x + 2| \(\ge\) |5 - x + x + 2| = 7

Dấu "=" xảy ra  khi (5- x). (x + 2) \(\ge\) 0 hay (x - 5). (x+2) \(\le\) 0

nhận xét: x - 5 < x + 2 nên x - 5 \(\le\) và x + 2 \(\ge\)

=> x \(\le\) 5 và x \(\ge\) -2 => -2 \(\le\) x \(\le\) 5

Vậy A nhỏ nhất = 7 khi  -2 \(\le\) x \(\le\) 5