Cho A=2008+334*999...998(có 1234 số 9).Hãy chưng tỏ A chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
như bạn thấy đấy, trong 1 tích mà có 1 thừa số chia hết cho 9 thì tích đó chia hết cho 9
999 chia hết cho 9 suy ra tích 334*999 chia hết cho 9
Hình thang và hình chữ nhật có nhiều nét giống nhau, tuy nhiên cách tính diện tích hình chữ nhật và diện tích hình thang lại khác nhau. Từ bài viết hướng dẫn cách tính diện tích hình chữ nhật trước đó, hôm nay Taimienphi sẽ chia sẻ với bạn đọc cách tính diện tích hình thang: vuông, cân, khi biết độ dài 4 cạnh, công thức tính. Hãy cùng theo dõi và chia sẻ nếu như bạn hay ai đó đang cần nhé.
Gọi 2 số đã cho là a và b (a,b thuộc N và a phải lớn hơn hoặc bằng b )
Nên: a=9 k1+ r
b=9 k2+r
Ta có: Hiệu a-b = (9 k1+r) - (9 k2 +r)
= 9 k1+r - 9 k2-r
= 9 k1 - 9 k2 + r-r
= 9.k1-9.k2
= 9. (k1+k2) chia hết cho 9
Hay (a-b) chia hết cho 9
Vậy hai số chia hết cho 9 có cùng số dư thì hiệu chúng chia hết cho 9
Nhớ k đúng cho mình nha!
Ta có : 243 chia hết cho 9 => 243a chia hết cho 9 (a thuộc N)
657 chia hết cho 9 => 657b chia hết cho 9 (b thuộc N)
Từ 2 điều trên => 243a + 657b chia hết cho 9 (a, b thuộc N)
bài này giải zậy hã
Ta có biểu thức sau có số hạng là :
( 999 - 100 ) + 1 + 900 ( số hạng )
A = ( 100 + 999 ) . 900 : 2 = 494550
\(494550chia\)\(het\)\(cho2\)
\(494550chia\)\(het\)\(cho5\)
A) 102016 + 8 chia hết cho 9
Ta có : 10000....0 + 8
= 1000...8
Vậy ( 1 + 0 + 0 + 0 + ...+ 0 + 8 ) = 9 chia hết cho 9.
B) 111...111 chia hết cho 9 ( với điều kiện có 27 chữ số 1)
Ta có : 1 + 1 + 1 + ... + 1 + 1 +1 = ( 27 : 2 ) x 2
= 13,5 x 2
= 27
Ta thấy : 27 chia hết cho 9 nên 111...111 chia hết cho 9
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)