Tính: \(\frac{185}{741}\times1438+135\times8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{370}{741}.1482+185.8\)
\(=370.\frac{1482}{741}+185.8=370.2+185.8=370.2+370.4=370.6=2220\)
Hok tốt!
\(\frac{1.2.6.4.6.4.5.2}{2.3.6.8.6.2.2.2.8.10}=\frac{1}{96}\)
Đây là tổng của 2 dãy:
\(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+...+\frac{1}{995\times997\times999}\)(1)
và
\(\frac{1}{2\times5\times8}+\frac{1}{5\times8\times11}+\frac{1}{8\times11\times14}+...+\frac{1}{1493\times1496\times1499}\)(2)
Dãy số có dạng là tích 3 thừa số, trong đó thừa số thứ 3 hơn thừa số thứ nhất n đơn vị và 2 thừa số cuối của phân số trước là 2 thừa số đầu của phân số sau. Để tính dãy kiểu này cần đưa tử số về hiệu của thừa số thứ 3 và thừa số thứ nhất (hiệu = n):
Vậy nhân dãy thứ nhất với 4:
\(=\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}+\frac{4}{5\times7\times9}+...+\frac{4}{995\times997\times999}\)
Nhận xét:
- \(\frac{4}{1\times3\times5}=\frac{5-1}{1\times3\times5}=\frac{5}{1\times3\times5}-\frac{1}{1\times3\times5}=\frac{1}{1\times3}-\frac{1}{3\times5}\)
- \(\frac{4}{3\times5\times7}=\frac{7-3}{3\times5\times7}=\frac{7}{3\times5\times7}-\frac{3}{3\times5\times7}=\frac{1}{3\times5}-\frac{1}{5\times7}\)
Vậy 4 lần tổng dãy 1 là:
\(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{995\times997}-\frac{1}{997\times999}\)
\(\frac{1}{1\times3}-\frac{1}{997\times999}\)
Suy ra tổng dãy (1) là \(\left(\frac{1}{3}-\frac{1}{997\times999}\right)\times\frac{1}{4}\)
Làm tương tự tính được tổng dãy (2) là: \(\left(\frac{1}{2\times5}-\frac{1}{1496\times1499}\right)\times\frac{1}{6}\)
Cộng 2 kết quả lại được tổng cần tính
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+....+\frac{1}{2014.2016}\)
\(=\frac{1}{2}\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+....+\frac{2}{2014.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+....+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{2016}\right)\)
\(=\frac{503}{4032}\)
`@` `\text {Ans}`
`\downarrow`
\(\text{ A = }\dfrac{1}{4\times8}+\dfrac{1}{8\times12}+\dfrac{1}{12\times16}+...+\dfrac{1}{172\times176}\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{4}{4\times8}+\dfrac{4}{12\times16}+...+\dfrac{4}{172\times176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{16}+...+\dfrac{1}{172}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\dfrac{43}{176}\)
\(\text{A = }\dfrac{43}{704}\)
Đáp số: `\text {A =} 43/704.`
A = 1/4 x 8 + 1/8 x 12 + 1/12 x 16 + ... + 1/176 x 180
=> 4A = 4/4 x 8 + 4/8 x 12 + 4/12 x 16 + ... + 4/176 x 180
=> 4A = 1/4 - 1/8 + 1/8 - 1/12 + 1/12 - 1/16 + ... 1/176 - 1/180
=> 4A = 1/4 - 1/180
=> 4A = 45/180 - 1/180
=> 4A = 44/180
=> 4A = 11/45
=> A = 11/45 : 4
=> A = 11/180
Vậy A = 11/180
A = \(\dfrac{1}{4\times8}\) + \(\dfrac{1}{8\times12}\) + \(\dfrac{1}{12\times16}\) +...+ \(\dfrac{1}{176\times180}\)
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{4}{4\times8}\)+ \(\dfrac{4}{12\times16}\)+...+ \(\dfrac{4}{176\times180}\))
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\) +...+ \(\dfrac{1}{176}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)(\(\dfrac{1}{4}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)\(\dfrac{11}{45}\)
A = \(\dfrac{11}{180}\)