Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10
=1/2-1/10
=5/10-1/10
=4/10=2/5
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}-\frac{1}{10}\)
\(\frac{2}{5}\)
\(C=\frac{1.5.6+2.10.12+24.8.10}{1.3.5+2.6.10+8.6.20}\)
\(C=\frac{1.5.6.\left(1^3+2^3+8^2\right)}{1.3.5.\left(1^3+2^3+8^2\right)}=\frac{6}{3}=2\)
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+....+\frac{5}{298.300}\)
\(=\frac{5}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+....+\frac{2}{298.300}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+....+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{300}\right)=\frac{5}{2}.\frac{37}{150}=\frac{37}{60}\)
Vậy..........
\(\frac{4}{2\cdot4}+\frac{4}{4\cdot6}+...+\frac{4}{2008\cdot2010}+x=-\frac{1}{1005}\)
\(2\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{2008\cdot2010}\right)+x=-\frac{1}{1005}\)
\(2\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)+x=-\frac{1}{1005}\)
\(2\cdot\left[\left(\frac{1}{2}-\frac{1}{2010}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+...+\left(\frac{1}{2008}-\frac{1}{2008}\right)\right]+x=-\frac{1}{1005}\)\(2\cdot\left[\left(\frac{1005}{2010}-\frac{1}{2010}\right)+0+...+0\right]+x=-\frac{1}{1005}\)
\(2\cdot\frac{1004}{2010}+x=-\frac{1}{1005}\)
\(\frac{1004}{1005}+x=-\frac{1}{1005}\)
\(x=-\frac{1}{1005}-\frac{1004}{1005}=-1\)
Vậy x=-1
Chúc bạn học tốt!^_^
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2015.2016}\right)\)
Tìm x :
a) \(x-5=49:7\)
\(\Leftrightarrow x-5=7\)
\(\Leftrightarrow x=7+5\)
\(\Leftrightarrow x=12\)
Vậy : \(x=12\)
b) \(2x+6=24\)
\(\Leftrightarrow2x=24-6=18\)
\(\Leftrightarrow x=18:2\)
\(\Leftrightarrow x=9\)
Vậy : \(x=9\)
c) \(\frac{1}{3}:x+\frac{1}{2}=5\)
\(\Leftrightarrow\frac{1}{3}:x=5-\frac{1}{2}=\frac{9}{5}\)
\(\Leftrightarrow x=\frac{1}{3}:\frac{9}{5}\)
\(\Leftrightarrow x=\frac{5}{27}\)
Vậy : \(x=\frac{5}{27}\)
d) \(\frac{1}{6}.x-\frac{1}{3}=2\)
\(\Leftrightarrow\frac{1}{6}.x=2-\frac{1}{3}=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{5}{3}:\frac{1}{6}\)
\(\Leftrightarrow x=10\)
Vậy : \(x=10\)
e) \(\frac{x}{27}=\frac{3}{x}\)
\(\Leftrightarrow x.x=27.3\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\) mà \(x\in N\)
\(\Rightarrow x=9\)
Vậy : \(x=9\)
g) \(1200:24-\left(17-x\right)=36\)
\(\Leftrightarrow50-17+x=36\)
\(\Leftrightarrow33+x=36\)
\(\Leftrightarrow x=36-33\)
\(\Leftrightarrow x=3\)
Vậy : \(x=3\)
h) \(674-\left(12+x\right)=427\)
\(\Leftrightarrow12+x=674-427=247\)
\(\Leftrightarrow x=247-12\)
\(\Leftrightarrow x=230\)
Vậy : \(x=230\)
k) \(36.\left(x-9\right)=900\)
\(\Leftrightarrow x-9=900:36\)
\(\Leftrightarrow x-9=25\)
\(\Leftrightarrow x=25+9\)
\(\Leftrightarrow x=34\)
m) \(1,2:x+3,8:x=2,5\)
\(\Leftrightarrow\left(1,2-3,8\right):x=2,5\)
\(\Leftrightarrow-2,6:x=2,5\)
\(\Leftrightarrow x=\frac{-2,6}{2,5}=-\frac{26}{25}\)
Vậy : \(x=-\frac{26}{25}\)
n) \(\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right).x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right).x=\frac{1}{3}\)
\(\Leftrightarrow\left[\frac{1}{2}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\right].x=\frac{1}{3}\)
\(\Leftrightarrow\left[\frac{1}{2}.\left(1-\frac{1}{10}\right)\right].x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{2}.\frac{9}{10}.x=\frac{1}{3}\)
\(\Leftrightarrow\frac{9}{20}.x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}:\frac{9}{20}\)
\(\Leftrightarrow x=\frac{20}{27}\)
Vậy : \(x=\frac{20}{27}\)
\(A=\frac{2\cdot9\cdot8+3\cdot12\cdot10+4\cdot15\cdot12+...+98\cdot297\cdot200}{2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+...+98\cdot99\cdot100}\)
\(=\frac{2\cdot1\cdot3\cdot3\cdot4\cdot2+3\cdot1\cdot4\cdot3\cdot5\cdot2+...+98\cdot1+99\cdot3+100\cdot2}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=\frac{1\cdot3\cdot2\cdot\left(2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\right)}{2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100}\)
\(=1\cdot3\cdot2\)
\(=6\)
\(A^2=6^2=36\)
\(\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+....+\frac{1}{2014.2016}\)
\(=\frac{1}{2}\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+....+\frac{2}{2014.2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+....+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{2016}\right)\)
\(=\frac{503}{4032}\)
Đáp án : \(\frac{503}{4032}\)