Cho a,b,c ∈ R. Tìm giá trị nhỏ nhất của P = \(a^2+b^2+ab-20a-19b+2151\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bất đẳng thức Bnhiacopxki ta có :
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
b) Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Rightarrow ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left(a^2+2ab+b^2\right)-4\left(a+b\right)+4+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
Ta có : \(P=a^2+b^2+c^2\)
\(\Rightarrow P+2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow P+2=\left(a+b+c\right)^2\ge0\)
\(\Rightarrow P\ge-2\)
Vậy MinP = -2 tại a + b + c = 0 .
Mik thấy a,b,c>0 \(\Rightarrow a+b+c>0\)
\(\Rightarrow2P-2=2a^2+2b^2+2c^2-2ab-2bc-2ca=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\Rightarrow2P\ge2\Rightarrow P\ge1\) Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\) Vậy...
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.
Cách làm như sau:
\(4M=4a^2+4ab+4b^2-12a-12b+8004\)
\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)
\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)
\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)
Vậy 4M min = 7992, vây M min = 1998.
Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)
P=a 2 +b 2 +ab−20a−19b+2151 Bước 1: Phân tích biểu thức và áp dụng phương pháp đạo hàm Ta có thể tìm giá trị nhỏ nhất của biểu thức 𝑃 P bằng cách tính các đạo hàm riêng của 𝑃 P theo 𝑎 a và 𝑏 b, sau đó giải hệ phương trình. Bước 2: Tính đạo hàm riêng của 𝑃 P Đạo hàm riêng của 𝑃 P theo 𝑎 a: ∂ 𝑃 ∂ 𝑎 = 2 𝑎 + 𝑏 − 20 ∂a ∂P =2a+b−20 Đạo hàm riêng của 𝑃 P theo 𝑏 b: ∂ 𝑃 ∂ 𝑏 = 2 𝑏 + 𝑎 − 19 ∂b ∂P =2b+a−19 Bước 3: Giải hệ phương trình đạo hàm Để tìm các giá trị cực trị (giá trị nhỏ nhất hoặc lớn nhất của 𝑃 P), ta giải hệ phương trình đạo hàm: { 2 𝑎 + 𝑏 − 20 = 0 𝑎 + 2 𝑏 − 19 = 0 { 2a+b−20=0 a+2b−19=0 Từ phương trình đầu tiên: 2 𝑎 + 𝑏 = 20 2a+b=20, ta suy ra: 𝑏 = 20 − 2 𝑎 b=20−2a Thay vào phương trình thứ hai: 𝑎 + 2 ( 20 − 2 𝑎 ) − 19 = 0 a+2(20−2a)−19=0 𝑎 + 40 − 4 𝑎 − 19 = 0 a+40−4a−19=0 − 3 𝑎 + 21 = 0 −3a+21=0 𝑎 = 7 a=7 Thay giá trị 𝑎 = 7 a=7 vào phương trình 𝑏 = 20 − 2 𝑎 b=20−2a: 𝑏 = 20 − 2 × 7 = 6 b=20−2×7=6 Bước 4: Tính giá trị của 𝑃 P Thay 𝑎 = 7 a=7 và 𝑏 = 6 b=6 vào biểu thức 𝑃 P: 𝑃 = 7 2 + 6 2 + 7 × 6 − 20 × 7 − 19 × 6 + 2151 P=7 2 +6 2 +7×6−20×7−19×6+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 P=49+36+42−140−114+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 = 2024 P=49+36+42−140−114+2151=2024 Kết luận: Giá trị nhỏ nhất của 𝑃 P là 2024 2024 .