K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1

P=a 2 +b 2 +ab−20a−19b+2151 Bước 1: Phân tích biểu thức và áp dụng phương pháp đạo hàm Ta có thể tìm giá trị nhỏ nhất của biểu thức 𝑃 P bằng cách tính các đạo hàm riêng của 𝑃 P theo 𝑎 a và 𝑏 b, sau đó giải hệ phương trình. Bước 2: Tính đạo hàm riêng của 𝑃 P Đạo hàm riêng của 𝑃 P theo 𝑎 a: ∂ 𝑃 ∂ 𝑎 = 2 𝑎 + 𝑏 − 20 ∂a ∂P ​ =2a+b−20 Đạo hàm riêng của 𝑃 P theo 𝑏 b: ∂ 𝑃 ∂ 𝑏 = 2 𝑏 + 𝑎 − 19 ∂b ∂P ​ =2b+a−19 Bước 3: Giải hệ phương trình đạo hàm Để tìm các giá trị cực trị (giá trị nhỏ nhất hoặc lớn nhất của 𝑃 P), ta giải hệ phương trình đạo hàm: { 2 𝑎 + 𝑏 − 20 = 0 𝑎 + 2 𝑏 − 19 = 0 { 2a+b−20=0 a+2b−19=0 ​ Từ phương trình đầu tiên: 2 𝑎 + 𝑏 = 20 2a+b=20, ta suy ra: 𝑏 = 20 − 2 𝑎 b=20−2a Thay vào phương trình thứ hai: 𝑎 + 2 ( 20 − 2 𝑎 ) − 19 = 0 a+2(20−2a)−19=0 𝑎 + 40 − 4 𝑎 − 19 = 0 a+40−4a−19=0 − 3 𝑎 + 21 = 0 −3a+21=0 𝑎 = 7 a=7 Thay giá trị 𝑎 = 7 a=7 vào phương trình 𝑏 = 20 − 2 𝑎 b=20−2a: 𝑏 = 20 − 2 × 7 = 6 b=20−2×7=6 Bước 4: Tính giá trị của 𝑃 P Thay 𝑎 = 7 a=7 và 𝑏 = 6 b=6 vào biểu thức 𝑃 P: 𝑃 = 7 2 + 6 2 + 7 × 6 − 20 × 7 − 19 × 6 + 2151 P=7 2 +6 2 +7×6−20×7−19×6+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 P=49+36+42−140−114+2151 𝑃 = 49 + 36 + 42 − 140 − 114 + 2151 = 2024 P=49+36+42−140−114+2151=2024 Kết luận: Giá trị nhỏ nhất của 𝑃 P là 2024 2024 ​ .

19 tháng 7 2020

Bài này cho thêm điều kiện a, b, c dương

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(E=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\)\(\frac{\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}}{2}\ge\frac{3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{6}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

3 tháng 6 2019

ta có \(P=a^4+b^4+2-2-ab\)

     AD BĐT cô si ta có 

\(a^4+1\ge2a^2\) dấu = khi a=1

\(b^4+1\ge2b^2\) dấu = khi b =1 

Khi đó  \(P\ge2a^2+2b^2-2-ab\)

        \(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)

     \(P\ge4-3ab\)(  Thay \(a^2+b^2+ab=3\)vào )   (1)

 mặt khác \(a^2+b^2\ge2ab\) 

khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)

=>   \(ab\le1\)  (2)

từ (1) và (2) 

ta có \(P\ge4-3ab\ge4-3=1\)

 vậy P đạt GTNN là 1 khi a=b=1

21 tháng 8 2019

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

20 tháng 8 2023

hay bạn ơi

 

11 tháng 12 2019

\(a+b+c=1\)

\(\Rightarrow\left(a+b+c\right)^2=1\)

\(\Rightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1-2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2=1-2\left(ab+bc+ca\right)\)

Lại có:

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)

\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow abc\le\frac{ab+bc+ca}{9}\)

Khi đó:

\(M\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=21+9=30\)

Dấu "=" xảy ra tại \(a=b=c=\frac{1}{3}\)