K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

giúp mik ik mn

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

8 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta BHD\)vuông và \(\Delta CKD\)vuông có: \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

BD = CD (AD là đường trung tuyến của \(\Delta ABC\))

=> \(\Delta BHD\)vuông = \(\Delta CKD\)vuông (ch.gn) (đpcm)

b/ Ta có \(\Delta BHD\)\(\Delta CKD\)(cmt) => BH = CK (hai cạnh tương ứng)

và AB = AC (\(\Delta ABC\)cân tại A)

=> AB - BH = AC - CK

=> AH = AK => \(\Delta AHK\)cân tại A (đpcm)

c/ Ta có \(\Delta AHK\)cân tại A (cmt) => \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)(1)

và \(\Delta ABC\)cân tại A (gt) => \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{B}\)ở vị trí đồng vị => HK // BC (đpcm)

d/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

BD = CD (AD là đường trung tuyến của \(\Delta ABC\))

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) => \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng) => AD là đường phân giác của \(\Delta ABC\)(đpcm)

e/ Ta có \(\Delta ADB\)\(\Delta ADC\)(cmt) =>\(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)(hai góc kề bù)

=> \(\widehat{ADB}=\widehat{ADC}=90^o\)=> AD \(\perp\)BC

và AD là đường trung tuyến của \(\Delta ABC\)

=> AD là đường trung trực của BC

Mà HK // BC

=> AD là đường trung trực của HK (đpcm)

Bạn tự kẻ hình nhé .

a)Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là trung tuyến của \(\Delta ABC\)

Xét \(\Delta ABC\),có:

AD,BE là hai đường trung tuyến

O là giao điểm của AD và BE

\(\Rightarrow O\)là trọng tâm của \(\Delta ABC\)

b)Vì AD là trung tuyến của ​\(\Delta ABC\)

\(\Rightarrow D\)là trung điểm của BC

\(\Rightarrow BD=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)

​Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là đường cao của \(\Delta ABC\)

Áp dụng định lí Pytago cho \(\Delta ABD\)vuông tại D ,có:

\(AD^2=AB^2-BD^2=5^2-4^2=9\)

\(\Rightarrow AD=\sqrt{9}=3\left(cm\right)\)

Vì O là trọng tâm của \(\Delta ABC\)

\(\Rightarrow OD=\frac{1}{3}AD=\frac{1}{3}.3=1\left(cm\right)\)

c)Để O là giao điểm của 3 đường phân giác của \(\Delta ABC\)

thì \(BE\)là phân giác của \(\Delta ABC\)

mà BE là đường trung tuyến của \(\Delta ABC\)

\(\Leftrightarrow\Delta ABC\)đều .​

5 tháng 7 2021

tui có chơi

a) Xét ΔABD và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: BD=CD(hai cạnh tương ứng)

mà B,D,C thẳng hàng(gt)

nên D là trung điểm của BC

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh BC(cmt)

BE là đường trung tuyến ứng với cạnh BC(gt)

AD cắt BE tại O(gt)

Do đó: O là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)

b) Ta có: D là trung điểm của BC(cmt)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Ta có: ΔABD=ΔACD(cmt)

nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=5^2-4^2=25-16=9\)

hay AD=3(cm)

Xét ΔABC có 

AD là đường trung tuyến ứng với cạnh CB(cmt)

O là trọng tâm của ΔABC(cmt)

Do đó: \(OD=\dfrac{1}{3}AD\)(Tính chất trọng tâm của tam giác)

hay OD=1(cm)

Vậy: OD=1cm

c) Xét ΔABC có 

O là giao điểm của 3 đường phân giác

O là giao điểm của 3 đường trung tuyến

Do đó: ΔABC đều