3^x + 3^x+2=270
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^x+3^{x+2}=270\)
\(\Rightarrow3^x+3^x.3^2=270\)
\(\Rightarrow3^x\left(3^2+1\right)=270\)
\(\Rightarrow3^x.10=270\)
\(\Rightarrow3^x=27\)
Vì \(3^3=27\)
nên \(\Rightarrow x=3\)
Vậy ..................
\(3^x+3^{x+2}=270\)
\(\Leftrightarrow3^x\left(1+3^2\right)=270\)
\(\Leftrightarrow3^x.10=270\)
\(\Leftrightarrow3^x=27\)
\(\Leftrightarrow3^x=3^3\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy ..
Tìm x :
x + 1/3 = 4/5
x = 4/5 - 1/3
x = 12/15 - 5/15
x = 7/15
x - 1/2 = 2/7
x = 2/7 + 1/2
x = 4/14 + 7/14
x = 11/14
4/7 × x = 1/3
x = 1/3 : 4/7
x = 1/3 × 7/4
x = 7/12
x : 2/5 = 2/9
x = 2/9 × 2/5
x = 4/45
20 × 7 : ( 5 × x - 3 × 5 ) = 4
140 : 5 × ( x - 3 ) = 4
5 × ( x - 3 ) = 140 : 4
5 × ( x - 3 ) = 35
x - 3 = 35 : 5
x - 3 = 7
x = 7 + 3
x = 10
x - 270 = 420 : 105
x - 270 = 4
x = 4 + 270
x = 274
x - 140 : 35 = 270
x - 4 = 270
x = 270 + 4
x = 274
x + 1/3 = 4/5
x = 4/5 - 1/3
x = 7/15
x - 1/2 = 2/7
x = 2/7 + 1/2
x = 11/14
4/7 * x = 1/3
x = 1/3 : 4/7
x = 7/12
x : 2/5 = 2/9
x = 2/9 * 2/5
x 4 / 45
20 * 7 : ( 5*x - 3 * 5) =4
= 140 :(5*x -3 *5) =4
5*x- 3*5 = 140 : 4
5*x - 3 * 5 = 35
5* x = 35 + 3 * 5
5 * x = 50
x = 50 : 5
x = 10
x - 270 = 402 : 105
x - 270 = 4
x = 270 + 4
x = 274
x- 140 : 35 = 270
x - 4 = 270
x = 270 + 4
x = 274
\(3^{x+1}\) + 3\(^{x+2}\) - 2 \(\times\) 3\(^x\) = 270
3\(^x\).(3 + 32 - 2) = 270
3\(^x\).10 = 270
3\(^x\) = 270 : 10
3\(^x\) = 27
3\(^x\) = 33
\(x\) = 3
Vậy \(x\) = 3
3x+1+3x+2-2 . 3x=270
3x . 3+3x . 32-2 . 3x=270
3x . (3+9-2) =270
3x . 10 =270
3x =270 : 10 = 27 = 33
=>x=3
\(\left(x-2\right)\times3-270:45=120\)
\(\Rightarrow3x-6-6=120\)
\(\Rightarrow3x=120+6+6\)
\(\Rightarrow3x=132\)
\(\Rightarrow x=44\)
3^x+2 + 3^x = 270
3^x . 9 + 3^x = 270
3^x ( 1+9)= 270
3^x . 10 = 270
3^x = 27
3^x = 3^3
=> x= 3
3\(^x\) + 3\(^{x+2}\) = 270
3\(^x\).(1+ 32) = 270
3\(^x\). (1 + 9) = 270
3\(^x\).10 = 270
3\(^x\) = 270 : 10
3\(^x\) = 27
3\(^x\) = 33
\(x=3\)
Vậy \(x=3\)
\(3^x+3^{x+2}=270\)
\(1.3^x+3^x.3^2=270\)
\(1.3^x+3^x.9=270\)
\(\left(1+9\right).3^x=270\)
\(10.3^x=270\)
\(3^x=270:10\)
\(3^x=27\)
\(3^x=3^3\)
\(x=3\)