Tính bằng cách thuận tiện
C= 1x1+2x2+3x3+...+99x99+100x100
giúp mình với mai cô kiểm tra rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=1.1+2.2+3.3+4.4+...+99.99\)
\(\Rightarrow E=1^2+2^2+3^2+4^2+...+99^2\)
\(\Rightarrow E=\dfrac{99.\left(99+1\right)\left(2.99+1\right)}{6}\)
\(\Rightarrow E=\dfrac{99.100.199}{6}\)
\(\Rightarrow E=33.50.199=328350\)
E = 1 x 1 + 2 x 2 + 3 x 3 + 4 x 4 +...+ 99 x 99
E = 1x(2-1) + 2 x (3-1)+...+ 99 x (100 -1)
D = 1 x 2 - 1 + 2 x 3 - 2 +...+ 99 x 100 - 99
D = 1x2 + 2 x 3 +...+ 99 x 100 - ( 1 + 2 +...+ 99)
Đặt A = 1x2 + 2 x 3 +...+ 99 x 100
B = 1 + 2 + ...+ 99
1x2 x 3 = 1x2x3
2x3x3 = 2x 3 x (4-1) = 2x3x4 - 1x2x3
3 x 4 x 3 = 3 x 4 x ( 5 - 2) = 3 x 4 x 5 - 2 x 3 x 4
................................................
99 x 100 x 3 = 99 x 100 x (101 - 98) = 99x100x101 - 98 x 99 x 100
Cộng vế với vế ta có: 3A = 99 x 100 x 101
A = 99 x 100 x 101 : 3 = 333300
B = 1 + 2 + 3 + ...+ 99
B = (99 + 1).[(99 -1):1 +1]:2 = 4950
E = 33300 - 4950 = 328350
a, \(4320:9-8640:18+750\)
\(=4320:9-(8640:2):(18:2)+750\)
\(=4320:9-4320:9+750\)
\(=(4320-4320):9+750\)
\(=0:9+750=0+750=750\)
a, 4320:9−8640:18+7504320:9−8640:18+750
=4320:9−(8640:2):(18:2)+750=4320:9−(8640:2):(18:2)+750
=4320:9−4320:9+750=4320:9−4320:9+750
=(4320−4320):9+750=(4320−4320):9+750
=0:9+750=0+750=750=0:9+750=0+750=750
Ta có :
\(D=1.1!+2.2!+...+100.100!\)
\(=\left(2-1\right)1!+\left(3-1\right).2!+\left(4-1\right).3!+...+\left(101-1\right).100!\)
\(=2!-1!+3!-2!+4!-3!+...+101!-100!\)
\(=101!-1!\)
Số quá lớn nhé :)
Lời giải:
$P(1)=100.1^{100}+99.1^{99}+....+2.1^2+1$
$=100+99+98+...+2+1=100(100+1):2=5050$
1 ... 1/1 x 1 + 1/2 x 2 + 1/3 x 3 + ... + 1/100 x 100
1 ... 1+1/2x2+1/3x3+...+1/100x100
1=1/1x1+1/2x2+1/3x3+...+1/100x100
C=1x1+2x2+...+99x99+100x100
\(=1^2+2^2+...+100^2\)
\(=\dfrac{100\times\left(100+1\right)\times\left(2\times100+1\right)}{6}\)
\(=\dfrac{100\times101\times201}{6}=338350\)
c=1^2 + 2^2+3^2+...+99^2+100^2
c=1.(2-1)+2.(3-1)+........+99.(100-1)+100.(101-1)
c=1.2-1+2.3-2+....+99.100-99+100.101-100
c=1.2+2.3+....+99.100+100.101-(1+2+3+..+100)
coi 1.2+2.3+....+99.100+100.101 la A
1+2+...+100 la B
3A=1.2.3+2.3.3+3.3.4+...+99.100.3+100.101.3
=1.2.(3-0)+2.3.(4-1)+....+99.100.(101-98)+100.101.(102-99)
=1.2.3-0.1.2+2.3.4-1.2.3+....+99.100.101-98.99.100+100.101.102-99.100.101
=0.1.2+100.101.102
=1030200
B=5050
Ta có c=A-B = 1030200-5050=1025150