Tìm tất cả các số nguyên \(x\), \(y\), biết
a. \(\left(x-2\right)\) . \(\left(y-1\right)\) \(=\) \(-3\)
b. \(\left(x+1\right)\) . \(\left(x+4\right)\) \(...
Đọc tiếp
Tìm tất cả các số nguyên \(x\), \(y\), biết
a. \(\left(x-2\right)\) . \(\left(y-1\right)\) \(=\) \(-3\)
b. \(\left(x+1\right)\) . \(\left(x+4\right)\) \(< 0\)
Helppppp!!!
Đây là toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Câu a:
(\(x-2\)).(y - 1) = - 3
(\(x-2\)).[(y - 1) : (-1)] = 3
(\(x-2\)).(1 - y) = 3
Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
Theo bảng trên ta có: (\(x;y\)) = (-1; 2); (1; 4); (3; -2) ; (5; 0 )
Vậy Các cặp \(x;y\) thỏa mãn đề bài là: (-1; -2); (1; 4); (3; -2); (5; 0)
a: (x-2)(y-1)=-3
=>\(\left(x-2;y-1\right)\in\left\{\left(1;-3\right);\left(-3;1\right);\left(-1;3\right);\left(3;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(3;-2\right);\left(-1;2\right);\left(1;4\right);\left(5;0\right)\right\}\)
b: (x+1)(x+4)<0
TH1: \(\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\)
=>-4<x<-1
mà x nguyên
nên \(x\in\left\{-3;-2\right\}\)