Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1: ta có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.
Cách 2: P = 2^9 + 2^99 = 2^9 + (2^11)^9 = (2+2^11)(2^8 - 2^7.2^11 + ..-2.2^77 + 2^88)
Nhân tử thứ nhất 2 + 2^11 = 2050
Nhân tử thứ hai là một số chẳn = 2A (vì là tổng hiệu của các bội của 2)
=> P = 2050.2A = 4100.A chia hết cho 100
Ta có:abc+deg=100a+10b+c+100d+10e+g
=99a+a+9b+b+c+99d+d+9e+e+g
=(99a+9b+99d+9e)+(a+b+c+d+e+g)
=9(11a+b+11d+e)+(a+b+c+d+e+g)
Vì abc+deg chia hết cho 9 mà 9(11a+b+11d+e) chia hết cho 9 nên (a+b+c+d+e+g) chia hết cho 9
Vậy abc+deg chia hết cho 9 thì (a+b+c+d+e+g) chia hết cho 9
abc + deg = 100a + 10b + c + 100d + 10e + g
= 100(a + d) + 10(b + e) + (c + g)
= 99(a + d) + 9(b + e) + (a + b + c + d + e + g) chia hết cho 9
Mà 99(a + d) chia hết cho 9
9(b + e) chia hết cho 9
Vậy a + b + c + d + e + g chia hết cho 9
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đây không phải toán lớp 1 em nhé. Lần sau, em đăng đúng khối lớp, tránh làm loãng diễn đàn. Cảm ơn em đã đồng hành cùng Olm.
kkk