K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(3+3^2+3^3+3^4+...+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{99}\right)⋮4\)

6 tháng 11

A  = 31 + 32 + 33 + ... + 3100

Xét dãy số: 1; 2; 3; ...; 100

Dãy số trên là dãy số cách đều với khoảng cách là:

            2 - 1 = 1

Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100 (số hạng)

    Vì 100 : 2 = 50 

Nhóm hai số hạng liên tiếp của A vào nhau ta được:

    A = (31 + 32) + (32 + 33) + .. + (399 + 3100)

    A = 3.(1 + 3) + 33(1 +3) + .. + 399.(1+ 3)

 A = (1+ 3).(3 + 33 + ..+ 399)

A = 4.(3 + 33 + ... + 399) ⋮ 4 (đpcm)

 

18 tháng 10 2023

Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰

= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)

= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)

= 3.4 + 3³.4 + ... + 3⁹⁹.4

= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4

Vậy A ⋮ 4

18 tháng 10 2023

.

3 tháng 10 2021

\(B=3^0+3^1+3^2...+3^{100}\)

\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)

\(=3^0\times13+3^3\times13+...+3^{98}\times13\)

\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)

3 tháng 10 2021

B=30+31+32...+3100

=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)

=30×13+33×13+...+398×13

23 tháng 11 2021

\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)

\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)

Giải:

S=\(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\) 

Có 30 phân số; chia làm 3 nhóm

S<\(\left(\dfrac{1}{30}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{40}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{50}+...+\dfrac{1}{50}\right)\) 

S<\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}\) 

S<\(\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\) 

⇒S<\(\dfrac{4}{5}\) (đpcm)

Chúc bạn học tốt!

16 tháng 12 2021

\(A=1+3+3^2+3^3+...+3^{102}+3^{103}\)

\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{102}+3^{103}\right)\)

\(\Rightarrow A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)\)

\(\Rightarrow A=\left(1+3\right)\left(1+3^2+...+3^{102}\right)\)

\(\Rightarrow A=4\left(1+3^2+...+3^{102}\right)⋮4\)