K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2024

Em cần làm gì với biểu thức này?

6 tháng 11 2024

ABC=???

BCA=???

đặt câu hỏi phải cho số liệu chứ!!!

27 tháng 11 2021

Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.

28 tháng 7 2016

A = abc + bca + cab

=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>A = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> A = 111a + 111b + 111c

=> A= 111( a+b+c )= 37 . 3( a+b + c)

giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

 3(a+b+c) chia hết 37

  => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le\) a + b + c \(\le\) 27

 A = abc + bca + cab không phải là số chính phương

2 tháng 6 2015

ta có 

s = abc + bca + cab

=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>S = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> S = 111a + 111b + 111c

=> S = 111( a+b+c )= 37 . 3( a+b + c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

                       3(a+b+c) chia hết 37

                      => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le a+b+c\le27\) 

vậy S = abc + bca + cab không phải là số chính phương

1 tháng 6 2015

S = abc (ngang) + bca (ngang) + cab (ngang)

    = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

    = 111a + 111b + 111c

     = 111.(a + b + c)

=> Không phải là số chính phương vì a,b,c là các chữ số tự nhiên nên a + b + c \(\ne\) 111

1 tháng 11 2015

Ta có : 10.abc = 10(100a+10b+1c)=1000a+100b+10c=100b+10c+b+999b=bca +37.27a

Vì 37 chia hết cho 37 nên 37.27a chia hết cho 37                   (1)

Mà abc chia hết cho 37 nên 10.abc chia hết cho 37                (2)

Từ (1) và (2) => bca chia hết cho 37

           100.abc = 100(100a+10b+c)=10000a+1000b+100c=100c+10a+1b+9990a+999b

                                                                                    =cab +999(10a+b)=cab +37.27ab

Vì 37 chia hết cho 37 nên 37.27ab chia hết cho 37      (3)

Mà abc chia hết cho 37 nên 100abc chia hết cho 37    (4)

Từ (3) và (4)=> cab chia hết cho 37

          Vậy nếu abc chia hết cho 37 thì bca và cab chia hết cho 37

Nhớ **** cho mình nhé

5 tháng 8 2016

mình ko hiểu cái khỉ khô gì cả

5 tháng 8 2016

chờ xíu hỉu rồi

27 tháng 7 2015

Ta có :
abc + acb =bca
=>c+b=a
=>b+c+1=c
Nên a+1=c
=>abc + acb = bca.
=>a00+bc +a00+cd = bca
=>2.a00+ bc+cb=b00 + c0 +a
=>a.100.2+b.10+c+c.10+b =b.100+c.10+a
=>a.200+11.(b+c)=b.100+c.10+a
=>a.200+11.1a=b.100+c.10+a
=>a.200+11.10+11.a=b.10.10+c.10+a
=>a.211+110=10.(b0+c)+a
=>a.21.10+11.10=10(b.10+c)
=>10.(a.21+11)=10(b.10+c)
=>a.21+11=b.10+c
=>a.21+11=b.10+c

Thử từng trường hợp a từ 1 đến 9 rồi suy ra b và c (lưu ý là b và c từ 0 đến 9)

21 tháng 6 2017

495+459=954 đó mình làm rồi