K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=2+2^2+2^3+...+2^{2022}+2^{2023}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+\left(2^8+2^9+2^{10}+2^{11}\right)+...+\left(2^{2020}+2^{2021}+2^{2022}+2^{2023}\right)\)

\(=\left(2+4+8\right)+2^3\left(2+2^2+2^3+2^4\right)+2^7\left(2+2^2+2^3+2^4\right)+...+2^{2019}\left(2+2^2+2^3+2^4\right)\)

\(=14+30\cdot\left(2^3+2^7+...+2^{2019}\right)\)

\(=10+10\cdot3\cdot\left(2^3+2^7+...+2^{2019}\right)+4\)

=>A chia 10 dư 4

=>A chia 5 dư 4

26 tháng 12 2022

a) A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²

2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³

A = 2A - A

= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²³) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰²²)

= 2²⁰²³ - 2⁰

= 2²⁰²³ - 1

Vậy A = B

b) A = 2021 . 2023

= (2022 - 1).(2022 + 1)

= 2022.(2022 + 1) - 2022 - 1

= 2022² + 2022 - 2022 - 1

= 2022² - 1 < 2022²

Vậy A < B

25 tháng 7 2023

Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)

\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)

Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)

Suy ra  A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2

Vậy A < 2

25 tháng 7 2023

\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)

 

 

19 tháng 10 2023

a) 2²⁰²² + 2²⁰²³ = 2²⁰²².(1 + 2)

= 2²⁰²².3 ⋮ 3

b) Xem lại đề

c) 7⁸ + 7⁷ - 7⁶

= 7⁶.(7² + 7 - 1)

= 7⁶.(49 + 7 - 1)

= 7⁶.55 ⋮ 55

4A=2^2+2^4+...+2^2024

=>3A=2^2024-1

2B=2^2024

=>3A và 2B là hai số tự nhiên liên tiếp

1 tháng 1 2023

TK :

ta có 4A= 22 + 24 + 26 + 28 + ....+ 22024

từ đó 3A = 4A - A = 22 + 24 + ....  + 22024 - 1 + 22 + .... + 22022 = 22024 - 1

mà 2B = 22024

Từ đó dễ dàng suy ra được 3A và 2B là 2 số liên tiếp.

 

 

 

19 tháng 10 2023

\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)

Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)

nên \(A⋮3\).

\(Toru\)

19 tháng 10 2023

A=(2+22)+22(2+22)+...+22020(2+22)

A= 6.1+22.6+...+22020.6

A=6(1+22+...+22020) chia hết cho 3

vậy A chia hết cho 3

1 tháng 9 2023

Bài 1

a, cm : A = 165 + 215 ⋮ 3

    A = 165 + 215

   A = (24)5 +  215

  A  = 220 + 215

 A  =  215.(25 + 1)

 A = 215. 33 ⋮ 3 (đpcm)

b,cm : B = 88 + 220 ⋮ 17

    B = (23)8 + 220 

    B =  216 + 220

    B = 216.(1 + 24)

    B = 216. 17 ⋮ 17 (đpcm)

 

 

  

1 tháng 9 2023

c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1

C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)

C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)

C = 1 + 42+...+ 22016.42

C = 1 + 42.(20+...+22016)

42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm

          

16 tháng 10 2023

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

2:

a: =>2(x+1)=26

=>x+1=13

=>x=12

b: =>(6x)^3=125

=>6x=5

=>x=5/6(loại)

c: =>\(7\cdot3^x\cdot\dfrac{1}{3}+11\cdot3^x\cdot3=318\)

=>3^x=9

=>x=2

d: -2x+13 chia hết cho x+1

=>-2x-2+15 chia hết cho x+1

=>15 chia hết cho x+1

=>x+1 thuộc {1;3;5;15}

=>x thuộc {0;2;4;14}

e: 4x+11 chia hết cho 3x+2

=>12x+33 chia hết cho 3x+2

=>12x+8+25 chia hết cho 3x+2

=>25 chia hết cho 3x+2

=>3x+2 thuộc {1;-1;5;-5;25;-25}

mà x là số tự nhiên

nên x=1

1: 

a: Đặt A=2^2024-2^2023-...-2^2-2-1

Đặt B=2^2023+2^2022+...+2^2+2+1

=>2B=2^2024+2^2023+...+2^3+2^2+2

=>B=2^2024-1

=>A=2^2024-2^2024+1=1

c: \(=\dfrac{3^{12}\cdot2^{11}+2^{10}\cdot3^{12}\cdot5}{2^2\cdot3\cdot3^{11}\cdot2^{11}}=\dfrac{2^{10}\cdot3^{12}\left(2+5\right)}{2^{13}\cdot3^{12}}\)

\(=\dfrac{7}{2^3}=\dfrac{7}{8}\)