Bài 1: Tìm x ∈ N sao cho:
2x+1 chia hết cho x-1
Bài 2: Chia một số cho 15 được dư là 9. Hỏi số đó có chia hết cho 3 không. Có chia hết cho 5 không?
Bài 3: Tính tổng:
a) S=1+3/2+2+5/2+...+4039/2+2020
b) S=10,11+11,12+12,13+...+98,99+100
c) S=1+2+2^2+2^3+2^4+...+2^100
d) S=1+4+4^2+4^3+...+4^1000
e) S=1+2^2+2^4+2^6+...+2^100
f) S=1+3^2+3^4+3^6+...+3^102
Bài 4: Chứng minh rằng:
a) A=2+2^2+2^3+...+2^100 chia hết cho 6
b) B=1+5^2+5^4+...+5^40 chia hết cho 26
c) C=1+2^2+2^4+...+2^100 chia hết cho 21
d) D=1+3^2+3^4+...+3^100 chia hết cho 82
Dạ nhờ các thầy, cô, anh, chị giải giúp em với ạ!
Em xin cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
Bài 1:
\(c.\) \(2x+1⋮x-1\)
\(\Leftrightarrow\left(2x-2\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
Ta có bẳng sau:
\(x-1\) | \(-1\) | \(1\) | \(3\) | \(-3\) |
\(x\) | \(0\) | \(2\) | \(4\) | \(-2\) |
1:
a: =>7(x+1)=72-16=56
=>x+1=8
=>x=7
b: (2x-1)^3=4^12:16=4^10
=>\(2x-1=\sqrt[3]{4^{10}}\)
=>\(2x=1+\sqrt[3]{4^{10}}\)
=>\(x=\dfrac{1+\sqrt[3]{4^{10}}}{2}\)(loại)
c: \(\Leftrightarrow6x-2+7⋮3x-1\)
=>3x-1 thuộc Ư(7)
mà x là số tự nhiên
nên 3x-1 thuộc {-1}
=>x=0
d: x^2+7 chia hết cho 2x^2+1
=>2x^2+14 chia hết cho 2x^2+1
=>2x^2+1+13 chia hết cho 2x^2+1
=>2x^2+1 thuộc Ư(13)
=>2x^2+1=1(Vì x là số tự nhiên)
=>x=0
Bài 1:
\(2x+1\) ⋮ \(x\) - 1 (\(x\) \(\in\) N)
2(\(x\) - 1) + 3 ⋮ \(x-1\)
3 ⋮ \(x-1\)
\(x-1\) \(\in\) Ư(3) = [-3; -1; 1; 3}
Lập bảng ta có:
Theo bảng trên ta có: \(x\) \(\in\) {0; 2; 4}
Vậy \(x\) \(\in\) {0; 2; 4}
Bài 2:
Vì số đó chia cho 15 được dư là 9 nên số đó có dạng:
15k + 9 (k \(\in\) N)
15k + 9 = 3(5k + 3) ⋮ 3
15k ⋮ 5; 9 không chia hết cho 5 nên số đó không chia hết cho 5
Kết luận số đó chia hết cho 3 nhưng không chia hết cho 5