K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Gọi số cần tìm là a => a+1 chia hết cho 3, 7 và 25

=> a+1 là BSC (3, 7, 25)

BSCNN của 3, 7, 25 là: 3.7.25=525

=> Số cần tìm nhỏ nhất là: a=525-1=524

Tổng quát: a=525.k-1 (k thuộc N*)

DT
16 tháng 11 2023

Gọi số tự nhiên phải tìm là : x

Theo bài ra, suy ra : \(\left(x+1\right)⋮3,7,25\)

Mà x là STN nhỏ nhất

\(=>x+1\in BCNN\left(3;7;25\right)\)

Ta có : \(3=3,7=7,25=5^2\)

\(=>BCNN\left(3;7;25\right)=3.7.5^2=525\)

hay x+1=525 

Vậy x = 524

11 tháng 8 2021

gọi số cần tìm là x 

vì x : 3  dư 2 => x + 1 ⋮ 3 

    x : 7 dư 6 => x + 1 ⋮ 7

    x : 25 dư 24 => x + 1 ⋮ 24

=> x + 1 thuộc BC(3;7;24) 

có 3 = 3 ; 7 = 7; 24 = 2^2.3

=> BCNN(3;7;24) = 3.7.2^2 = 84

=> x + 1 thuộc B(84)

=> x + 1 thuộc {0;84;168; ....}

=> x thuộc {-1; 83; 167;. ...}

mà x thuộc N và x nhỏ nhất

=> x = 83

vậy số cần tìm là 83

11 tháng 8 2021

chết mình ghi lộn cái xong tính lộn luôn

24 = 2^3.3

nên BCNN = 2^3.3.7 = 168 nhé :((

18 tháng 12 2023

Gọi số cần tìm là \(x\)\(x\in\) N; Theo bài ra ta có:

\(x\) + 1 ⋮ 3; 7; 25

⇒ \(x\) + 1  \(\in\) BC(3;7;25)

3 = 3; 7 = 7; 25 = 52; BCNN(3; 7; 25) = 3.7.52 = 525

⇒ \(x\) + 1\(\in\) {0; 525; 1050;...;}

⇒  \(x\) \(\in\) {-1; 524; 1049;...;}

\(\Rightarrow\) \(x\) là số tự nhiên nhỏ nhất nên \(x\) = 524

 

18 tháng 12 2023

524 nhé bạn

 

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
NM
10 tháng 10 2021

ta có : 

undefined

4 tháng 2 2022

cóp mạng

8 tháng 1 2017

Gọi n là số cần tìm. Ta có: n + 1 ⋮ 8, do đó n + 65 ⋮ 8

Mặt khác: n + 3 ⋮ 31, do đó n + 65 ⋮ 31

Vậy n + 65 là bội chung của 8 và 31 và n + 65 < 1065

Các bội chung của 8 và 31 nhỏ hơn 1065 là : 248 ; 496 ; 744 ; 992.

Do đó n + 65 ∈ { 248 ; 496 ; 744 ; 992 }.

Vậy n ∈ { 183 ; 431; 679 ; 927 }

30 tháng 7 2018

Gọi n là số cần tìm. Ta có: n + 1 ⋮ 8, do đó n + 65 ⋮ 8

Mặt khác: n + 3 ⋮ 31, do đó n + 65 ⋮ 31

Vậy n + 65 là bội chung của 8 và 31 và n + 65 < 1065

Các bội chung của 8 và 31 nhỏ hơn 1065 là : 248 ; 496 ; 744 ; 992.

Do đó n + 65 ∈ { 248 ; 496 ; 744 ; 992 }.

Vậy n ∈ { 183 ; 431; 679 ; 927 }