Tìm số tự nhiên có ba chữ số khi chia cho 3 thì dư 2, khi chia cho 7 thì dư 6, khi chia cho 25 thì dư 24.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là x
vì x : 3 dư 2 => x + 1 ⋮ 3
x : 7 dư 6 => x + 1 ⋮ 7
x : 25 dư 24 => x + 1 ⋮ 24
=> x + 1 thuộc BC(3;7;24)
có 3 = 3 ; 7 = 7; 24 = 2^2.3
=> BCNN(3;7;24) = 3.7.2^2 = 84
=> x + 1 thuộc B(84)
=> x + 1 thuộc {0;84;168; ....}
=> x thuộc {-1; 83; 167;. ...}
mà x thuộc N và x nhỏ nhất
=> x = 83
vậy số cần tìm là 83
chết mình ghi lộn cái xong tính lộn luôn
24 = 2^3.3
nên BCNN = 2^3.3.7 = 168 nhé :((
Tìm số tự nhiên nhỏ nhất khi chia cho 3 thì dư 2; khi chia cho 7 thì dư 6; khi chia cho 25 thì dư 24
Gọi số cần tìm là \(x\); \(x\in\) N; Theo bài ra ta có:
\(x\) + 1 ⋮ 3; 7; 25
⇒ \(x\) + 1 \(\in\) BC(3;7;25)
3 = 3; 7 = 7; 25 = 52; BCNN(3; 7; 25) = 3.7.52 = 525
⇒ \(x\) + 1\(\in\) {0; 525; 1050;...;}
⇒ \(x\) \(\in\) {-1; 524; 1049;...;}
\(\Rightarrow\) \(x\) là số tự nhiên nhỏ nhất nên \(x\) = 524
Gọi n là số cần tìm. Ta có: n + 1 ⋮ 8, do đó n + 65 ⋮ 8
Mặt khác: n + 3 ⋮ 31, do đó n + 65 ⋮ 31
Vậy n + 65 là bội chung của 8 và 31 và n + 65 < 1065
Các bội chung của 8 và 31 nhỏ hơn 1065 là : 248 ; 496 ; 744 ; 992.
Do đó n + 65 ∈ { 248 ; 496 ; 744 ; 992 }.
Vậy n ∈ { 183 ; 431; 679 ; 927 }
Gọi n là số cần tìm. Ta có: n + 1 ⋮ 8, do đó n + 65 ⋮ 8
Mặt khác: n + 3 ⋮ 31, do đó n + 65 ⋮ 31
Vậy n + 65 là bội chung của 8 và 31 và n + 65 < 1065
Các bội chung của 8 và 31 nhỏ hơn 1065 là : 248 ; 496 ; 744 ; 992.
Do đó n + 65 ∈ { 248 ; 496 ; 744 ; 992 }.
Vậy n ∈ { 183 ; 431; 679 ; 927 }
Gọi số cần tìm là a => a+1 chia hết cho 3, 7 và 25
=> a+1 là BSC (3, 7, 25)
BSCNN của 3, 7, 25 là: 3.7.25=525
=> Số cần tìm nhỏ nhất là: a=525-1=524
Tổng quát: a=525.k-1 (k thuộc N*)