Bài 14: Cho hình thang ABCD (AB//CD)
a/ Biết A: B:C = 6:5:4 Tính các góc A, B,C, D
b/Cho AD + BC = AB. Phân giác góc C và D cắt nhau tại E. Chứng minh: A,E,B thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo câu 1 tại link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Bài 5
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB
Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)
a: AB//CD
=>\(\widehat{B}+\widehat{C}=180^0\)
mà \(\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}\)
nên \(\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{5+4}=\dfrac{180^0}{9}=20^0\)
=>\(\widehat{B}=5\cdot20^0=100^0;\widehat{C}=4\cdot20^0=80^0\)
Ta có: \(\dfrac{\widehat{A}}{6}=\dfrac{\widehat{B}}{5}\)
=>\(\dfrac{\widehat{A}}{6}=\dfrac{100^0}{5}=20^0\)
=>\(\widehat{A}=20^0\cdot6=120^0\)
AB//CD
=>\(\widehat{A}+\widehat{D}=180^0\)
=>\(\widehat{D}=180^0-120^0=60^0\)
b: Ta có: \(\widehat{CDE}=\widehat{ADE}\)(DE là phân giác của góc ADC)
\(\widehat{CDE}=\widehat{AED}\)(hai góc so le trong, DC//AE)
Do đó: \(\widehat{ADE}=\widehat{AED}\)
=>AD=AE
Ta có: \(\widehat{BEC}=\widehat{DCE}\)(hai góc so le trong, DC//BE)
mà \(\widehat{DCE}=\widehat{BCE}\)(CE là phân giác của góc DCB)
nên \(\widehat{BCE}=\widehat{BEC}\)
=>BE=BC
Ta có: AD+BC=AB
mà AD=AE và BE=BC
nên AE+BE=AB
=>E,A,B thẳng hàng