Cho tam giác ABC cân tại A, đường cao AH. Gọi M là trung điểm AC. Lấy điểm N sao cho M là trung điểm của HN .Chứng minh
a) Tứ giác AHCN Là hcn
b)AB//HN
(viết giả thuyết và kết luận)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
b) Xét ΔABH vuông tại H và ΔDCH vuông tại H có
BH=CH(ΔABH=ΔACH)
AH=DH(cmt)
Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)
Suy ra: AB=DC(hai cạnh tương ứng)
mà AB=AC(ΔABC cân tại A)
nên DC=AC(Đpcm)
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
\(\Delta ABC,AB=AC,M\) là trung điểm AC
M là trung điểm HN
a) AHCN là hình chữ nhật
b) AB // HN
a) Do \(AH\) là đường cao của \(\Delta ABC\left(gt\right)\)
\(\Rightarrow AH\perp BC\)
\(\Rightarrow\widehat{AHC}=90^0\)
Tứ giác AHCN có:
M là trung điểm của AC (gt)
M là trung điểm của HN (gt)
\(\Rightarrow AHCN\) là hình bình hành
Mà \(\widehat{AHC}=90^0\left(cmt\right)\)
\(\Rightarrow AHCN\) là hình chữ nhật
b) Do AHCN là hình chữ nhật (cmt)
\(\Rightarrow AN=HC\) và \(AN\) // \(HC\)
\(\Delta ABC\) cân tại A có AH là đường cao (gt)
\(\Rightarrow AH\) cũng là đường trung trực của \(\Delta ABC\)
\(\Rightarrow H\) là trung điểm của BC
\(\Rightarrow BH=HC\)
Mà \(AN=HC\left(cmt\right)\)
\(\Rightarrow AN=BH\)
Do \(AN\) // \(HC\left(cmt\right)\)
\(\Rightarrow AN\) // \(BH\)
Tứ giác ABHN có:
\(AN\) // \(BH\left(cmt\right)\)
\(AN=BH\left(cmt\right)\)
\(\Rightarrow ABHN\) là hình bình hành
\(\Rightarrow AB\) // \(HN\)