K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10
GT

\(\Delta ABC,AB=AC,M\) là trung điểm AC

M là trung điểm HN

KL

a) AHCN là hình chữ nhật

b) AB // HN

a) Do \(AH\) là đường cao của \(\Delta ABC\left(gt\right)\)

\(\Rightarrow AH\perp BC\)

\(\Rightarrow\widehat{AHC}=90^0\)

Tứ giác AHCN có:

M là trung điểm của AC (gt)

M là trung điểm của HN (gt)

\(\Rightarrow AHCN\) là hình bình hành

Mà \(\widehat{AHC}=90^0\left(cmt\right)\)

\(\Rightarrow AHCN\) là hình chữ nhật

b) Do AHCN là hình chữ nhật (cmt)

\(\Rightarrow AN=HC\) và \(AN\) // \(HC\)

\(\Delta ABC\) cân tại A có AH là đường cao (gt)

\(\Rightarrow AH\) cũng là đường trung trực của \(\Delta ABC\)

\(\Rightarrow H\) là trung điểm của BC

\(\Rightarrow BH=HC\)

Mà \(AN=HC\left(cmt\right)\)

\(\Rightarrow AN=BH\)

Do \(AN\) // \(HC\left(cmt\right)\)

\(\Rightarrow AN\) // \(BH\)

Tứ giác ABHN có:

\(AN\) // \(BH\left(cmt\right)\)

\(AN=BH\left(cmt\right)\)

\(\Rightarrow ABHN\) là hình bình hành

\(\Rightarrow AB\) // \(HN\)

11 tháng 12 2023

cứu với :(((((((((

14 tháng 12 2020

Tự vẽ hình nhé:vv

a) Vì D là điểm đối xứng với H qua M => DM=MH

Có: M là giao điểm của 2 đường chéo AB và DH, 2 đường chéo này cắt nhau tại trung điểm của mỗi đường 

=> AHBD là hình bình hành (1)

Lại có: \(\widehat{AHB}=90^o\) (2)

Từ (1) và (2) => AHBD là hình chữ nhật.

b) Xét \(\Delta AKN\) và \(\Delta CHN\):

AN=CN(gt)

\(\widehat{KAN}=\widehat{HCN}\)(2 góc so le trong)

\(\widehat{ANK}=\widehat{CNH}\)(2 góc đối đỉnh)

=> ΔAKN=ΔCHN(g.c.g)

=> \(\left\{{}\begin{matrix}AK=HC\\KN=HN\end{matrix}\right.\)(2 cạnh t/ứ) 

Xét \(\Delta DHK\)có: M là trung điểm HD

                            N là trung điểm KH (cmt)

=> MN là đường trung bình của \(\Delta DHK\)

=> \(MN=\dfrac{1}{2}DK\)

Mà \(MN=\dfrac{1}{2}BC=BH=HC\) (vì MN là đường trung bình của tam giác ABC)

=> MN=AK

=> \(AK=\dfrac{1}{2}DK\)

=> A là trung điểm của DK.

Gửi lần thứ 2 rồi T.T

17 tháng 10 2023

A B M N C H D E

a/

\(HM\perp AB;AC\perp AB\Rightarrow AN\perp AB\) => HM//AN

\(HN\perp AC;AB\perp AC\Rightarrow AM\perp AC\) => HN//AM

=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\) (gt)

=> AMHN là HCN (hình bình hành có 1 góc trong bằng 90o là HCN)

b/ Nối A với D và A với E

Xét tg vuông AMD và tg vuông AMH có

MD=MH; AM chung => tg AMD = tg AMH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{MAD}=\widehat{MAH}\)

Tương tự khi xét tg vuông ANH và tg vuông ANE

=> tg ANH = tg ANE \(\Rightarrow\widehat{NAH}=\widehat{NAE}\)

\(\Rightarrow\widehat{MAD}+\widehat{NAE}=\widehat{MAH}+\widehat{NAH}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{MAD}+\widehat{NAE}+\widehat{A}=\widehat{DAE}=90^o+90^o=180^o\)

=> D; A; E thẳng hàng

c/

Xét tg vuông MBD và tg vuông MBH có

MD=MH (gt)

MB chung

=> tg MBD = tg MBH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau) => BD=BH

Xét tg ADB và tg AHB có

tg AMD = tg AMH (cmt) => AD=AH

AB chung

BD=BH (cmt)

=> tg ADB = tg AHB \(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^o\Rightarrow BD\perp DE\)

C/m tương tự ta cũng có \(CE\perp DE\)

=> BD//CE (cùng vuông góc với DE)

=> BDEC là hình thang

d/

Ta có 

tg AMD = tg AMH (cmt) => AD=AH

c/m tương tự có

tg AHN = tg ANE => AE=AH

=> AD=AE

Xét tg vuông DHE có

AD=AE (cmt)

\(AH=AD=AE=\dfrac{DE}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

MD=MH; NE=NH => MN là đường trung bình của tg DHE

\(\Rightarrow MN=\dfrac{DE}{2}\)

\(\Rightarrow MN+AH=\dfrac{DE}{2}+\dfrac{DE}{2}=DE\)

 

12 tháng 12 2023

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Ta có: AMHN là hình chữ nhật

=>AM//HN và AM=HN

Ta có: AM//HN

N\(\in\)HK

Do đó: AM//KN

Ta có: AM=HN

HN=KN

Do đó: AM=KN

Xét tứ giác AMNK có

AM//NK

AM=NK

Do đó: AMNK là hình bình hành

12 tháng 12 2023

Cho mình xin hình được không ạ

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: AMHN là hình chữ nhật

=>AM//HN và AM=HN

AM=HN

HN=NE

Do đó: AM=NE

AM//HN

\(N\in HE\)

Do đó: AM//NE

Xét tứ giác AMNE có

AM//NE

AM=NE

Do đó: AMNE là hình bình hành

a: Xét tứ giác AHCN có 

M là trung điểm của AC

M là trung điểm của HN

Do đó: AHCN là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCN là hình chữ nhật

Suy ra: AC=HN

b: Xét ΔABC có 

H là trung điểm của BC

O là trung điểm của AB

Do đó;HO là đường trung bình

=>HO//AC và HO=AC/2

=>HO=AM và HO//AM

=>AOHM là hình bình hành

mà AO=AM

nên AOHM là hình thoi

4 tháng 7 2021

a,

\(\Delta ABC\) cân tại A có AH là đường cao nên đồng thời là trung trực

\(=>BH=HC\)

mà N là trung điểm BD\(=>BN=ND\)

=>\(HN\) là đường trung bình \(\Delta BCD\)\(=>HN//DC\)

b,từ ý a \(=>DM//HN\) mà M là trung điểm AH

=>AD=DN

mà DN=BN=>AD=DN=BN

mà AD+DN+BN=AB\(=>AD=\dfrac{1}{3}AB\)