Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
b: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đó:ABFC là hình thoi
a: Xét tứ giác AHCD có
N là trung điểm của AC
N là trung điểm của HD
Do đó: AHCD là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCD là hình chữ nhật
Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó: AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật
a: Xét tứ giác ADCH có
M là trung điểm của AC
M là trung điểm của HD
Do đó: ADCH là hình bình hành
mà AC=HD
nên ADCH là hình chữ nhật
a: Xét tứ giác AHCD có
M là trung điểm chung của AC vàHD
góc AHC=90 độ
Do đó: AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
a: Xét tứ giác AHCD có
M là trung điểm chung của AC vàHD
góc AHC=90 độ
Do đó: AHCD là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành
a: Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó: AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật
b: Xét tứ giác ABFC có
H là trung điểm của AF
H là trung điểm của BC
Do đó:ABFC là hình bình hành
mà AB=AC
nên ABFC là hình thoi
a) Ta có: E đối xứng với H qua M (gt)
=> M là trung điểm của HE
Xét tứ giác AHBE có:
MA = MB (M là trung điểm của AB)
ME = MH (M là trung điểm của HE)
\(\widehat{AHB}=90^o\)(Vì AH là đường cao vuông góc với BC)
=> AHBE là hcn (đpcm)
b, Vì ABC là tam giác cân
=> AB = AC (1)
Vì F đối xứng với A qua H
=> FB = AB ; FC = AC (2)
Từ (1) và (2) => AB = AC = FC = FB
Xét tứ giác ABFC có: AB = AC = FC = FB (cm trên)
=> ABFC là hình thoi (đpcm)