Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ EH // CD
Khi đó trong ΔAEH có
AM = MH (gt)
DM // EH
=> AD = ED (1)
Trong ΔDBCcó:
BH = CH (qh đường xiên - hình chiếu)
EH // CD
=> ED = BE (2)
Từ (1) và (2) => AD = ED = EB
mà AB = AD + ED + EB => AD = 1/3AB
=> AB = 3 AD ( đpcm)
Bài này ko khó đâu. Mình gợi ý nhé.
a, Tam giác ABC cân tại A có AH là đường cao nên AH là đường trung tuyến
Suy ra: H là trung điểm của BC
HN là đường trung bình của tam giác BDC nên HN song song với DC
b, Tam giác AHN có M là trung điểm của AH và HN song song với DM.
Do đó: D là trung điểm của AN
Ta có: AD =DN
DN =NB
AD +DN+NB =AB
Vậy AD =1/3 AB.
Chúc bạn học tốt.
a, Xét tam giác ABC, có:
M là trung điểm của AB
N là trung điểm của AC
=> MN là đtb của tam giác ABC
=> MN//BC
=> BMNC là hình thang (MN//BC)
Vì tam giác ABC cân tại A nên góc ABC = góc ACB
=> góc MBC = góc NCB.
Xét hình thang BMNC(MN//BC), có:
góc MBC = góc NCB
=> BMNC là hình thang cân.
b, Xét tam giác ABC, có:
N là trung điểm của AC
H là trung điểm của BC
=> NH là đtb của tam giác ABC
=> NH//AB và NH = 1/2 .AB
Vì M là trung điểm của AB nên AM = 1/2 . AB
Suy ra: AM = NH
Xét tứ giác AMHN, có:
AM = NH
NH//AM (NH//AB)
=> AMHN là hình bình hành (1)
Vì tam giác ABC cân tại A nên AB = AC
mà AM = 1/2 . AB ( M là tđ của AB )
AN = 1/2 . AC ( N là tđ của AC )
Suy ra: AM = AN (2)
Từ (1) và (2) ta suy ra: hình bình hành AMHN là hình thoi.
c,SABC = 1/2 . AH . BC = 1/2 . 4 . 6 = 12 (cm2)
Vì MN là đtb của tam giác ABC nên MN = 1/2 . BC
=> MN = 1/2 . 6 = 3 (cm)
Xét tam giác AHC có:
N là trung điểm của AC
ON // HC ( MN//BC)
=> O là trung điểm của AH
=> AO = 1/2 . AH = 1/2 . 4 = 2 (cm)
SAMN = 1/2 . AO . MN = 1/2 . 2 . 3 = 3 (cm2)
SBMNC = SABC - SAMN = 12 - 3 = 9 (cm2)
d,Vì K là điểm đối xứng của H qua N nên N là tđ của HK
=> HN = 1/2 . HK (3)
Vì AMHN là hình thoi nên HN = AM
mà AM = 1/2 . AB nên HN = 1/2 . AB (4)
Từ(3) và (4) ta suy ra:
HK = AB
Vì AM//NH nên AB//HK
mà HK = AB
nên AKHB là hình bình hành
=> hai đường chéo AH và BK cắt nhau tại tđ của mỗi đường
mà O là trung của AH
nên O là trung điểm của BK
=> BK đi qua O
=> B,O,K thẳng hàng.
a: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của CB
Xét ΔBDC có
H là trung điểm của BC
N là trung điểm của BD
Do đó: HN là đường trung bình của ΔBDC
Suy ra: HN//DC và \(HN=\dfrac{DC}{2}\)
b: Xét ΔANH có
M là trung điểm của AH
MD//NH
Do đó: D là trung điểm của AN
Suy ra: AD=DN
mà DN=NB
nên AD=DN=NB
Suy ra: \(AD=\dfrac{AD+DN+NB}{3}=\dfrac{AB}{3}\)