Tìm x,y biết:
a,3.(x-2)+150=240
b,(5^x -1).3-2=70
c,2^×+3+2^x=144
d,x+3÷hết cho x+1
e,2x+5÷hết cho x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bạn tự giải
b, \(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1 ; x2
c, Thay x = 1 ta được \(1+m+1+m=0\Leftrightarrow2m+2=0\Leftrightarrow m=-1\)
Thay m = -1 vào ta được \(x^2-1=0\Leftrightarrow x=1;x=-1\)
hay nghiệm còn lại là -1
a) Điều kiện : \(x\ge-\frac{3}{4}\)
Xét : \(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=\sqrt{\left(x+\frac{3}{4}\right)+2.\sqrt{x+\frac{3}{4}}.\frac{1}{2}+\frac{1}{4}}=\sqrt{\left(\sqrt{x+\frac{3}{4}}+\frac{1}{2}\right)^2}=\sqrt{x+\frac{3}{4}}+\frac{1}{2}\)
\(\Rightarrow x+\sqrt{x+\frac{3}{4}}+\frac{1}{2}=a\Leftrightarrow\left(x+\frac{3}{4}\right)+\sqrt{x+\frac{3}{4}}-\left(\frac{1}{4}+a\right)=0\)
Đặt \(y=\sqrt{x+\frac{3}{4}},y\ge0\). pt trên trở thành \(y^2+y-\left(a+\frac{1}{4}\right)=0\)
Để pt có nghiệm theo y thì \(\Delta=1^2+4.\left(a+\frac{1}{4}\right)=2\left(2a+1\right)\ge0\Leftrightarrow a\ge-\frac{1}{2}\)
Khi đó : \(x_1=\frac{-1-\sqrt{2\left(2a+1\right)}}{2}\), \(x_2=\frac{-1+\sqrt{2\left(2a+1\right)}}{2}\)
để \(\left|8-x\right|=8-x< =>8-x\ge0< =>x\le8\)
\(=>8-x=x^2+x< =>x^2+2x-8=0\)
\(< =>\left(x+1\right)^2-3^2=0< =>\left(x-2\right)\left(x+4\right)=0\)
\(=>\left[{}\begin{matrix}x=2\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\)
*để\(\left|8-x\right|=x-8< =>8-x< 0< =>x>8\)
\(=>x-8=x^2+x< =>x^2=-8\)(vô lí)
vậy x=2 hoặc x=-4
Ta có x + 2 y = 2 m x − y = m
⇔ x = 2 − 2 y m 2 − 2 y − y = m ⇔ x = 2 − 2 y 2 m + 1 y = m
Để phương trình có nghiệm duy nhất thì m ≠ - 1 2
Suy ra y = m 2 m + 1 ⇒ x = 2 − 2. m 2 m + 1 ⇒ x = 2 m + 2 2 m + 1
Vậy hệ có nghiệm duy nhất x = 2 m + 2 2 m + 1 y = m 2 m + 1
Để x > 1 y > 0
⇔ 2 m + 2 2 m + 1 > 1 m 2 m + 1 > 0 ⇔ 1 2 m + 1 > 0 m 2 m + 1 > 0 ⇔ 2 m + 1 > 0 m > 0 ⇔ m > − 1 2 m > 0 ⇒ m > 0
Kết hợp điều kiện m ≠ - 1 2 ta có m > 0
Đáp án: A
Bài 8:
a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)
=>-3x-12x+7=0
=>-15x+7=0
=>-15x=-7
hay x=7/15
b: Thay x=1 vào pt, ta được:
\(a^2-4-12+7=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)
hay \(a\in\left\{3;-3\right\}\)
c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)
Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0
hay \(a\notin\left\{4;-4\right\}\)
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
1: Vì (d) đi qua A(-2;5) và B(1;-4) nên ta có hệ phương trình:
-2a+b=5 và a+b=-4
=>a=-3; b=-1
2:
a: Để hàm số đồng biến thì 2m-1>0
=>m>1/2
a; 3.(\(x-2\)) + 150 = 240
3.(\(x-2\)) = 240 - 150
3\(\left(x-2\right)\) = 90
\(x-2\) = 90 : 3
\(x-2\) = 30
\(x=30+2\)
\(x=32\)
Vậy \(x=32\)
b; (5\(^x\) - 1)3 - 2 = 70
(5\(^x\) - 1).3 = 70 + 2
(5\(^x\) - 1). 3 = 72
5\(^x\) - 1 = 72 : 3
5\(^x\) - 1 = 24
5\(^x\) = 24 + 1
5\(^x\) = 25
5\(^x\) = 52
\(x=2\)
Vậy \(x=2\)