K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x>=0; x<>4

a: Thay x=9 vào A, ta được:

\(A=\dfrac{3}{3-2}=\dfrac{3}{1}=3\)

b: T=A-B

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}-\dfrac{4\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{2}{\sqrt{x}+2}-\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-2\left(\sqrt{x}-2\right)-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+2\sqrt{x}-2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

c: Để T nguyên thì \(\sqrt{x}-2⋮\sqrt{x}+2\)

=>\(\sqrt{x}+2-4⋮\sqrt{x}+2\)

=>\(-4⋮\sqrt{x}+2\)

mà \(\sqrt{x}+2>=2\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}+2\in\left\{2;4\right\}\)

=>\(x\in\left\{0;4\right\}\)

Kết hợp ĐKXĐ, ta được: x=0

16 tháng 7 2018

Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)

\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)

Vậy \(x=-1\)thì \(B_{max}=2010\)

16 tháng 7 2018

Bài 1:

\(D=\frac{x+5}{|x-4|}\)

Ta có: \(|x-4|\ge0\forall x\)

\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

Vì 1 không đổi

Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN

\(\Rightarrow x-4\)phải đạt GTLN

\(\Rightarrow x=13\)

GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)

Vậy x=3 thì D đạt GTNN
Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)

\(\Rightarrow P\le2010\)

\(\Rightarrow\)GTLN của P=2010

\(\Leftrightarrow\left(x+1\right)^{2008}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy x=-1 thì P đạt GTLN

a: \(=9-4\sqrt{5}\cdot\dfrac{1}{\sqrt{5}}=9-4=5\)

b:  \(=\sqrt{5}-2-\dfrac{1}{2}\cdot2\sqrt{5}=-2\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Đa thức biểu thị kết quả thứ nhất: K = (x + 1)2

Đa thức biểu thị kết quả thứ hai: H = (x – 1)2

Đa thức biểu thị kết quả cuối cùng:

Q = K – H = (x + 1)2 - (x – 1)2

= (x+1).(x+1) - (x – 1). (x – 1)

= x.(x+1) + 1.(x+1) - x(x-1) + (-1). (x-1)

= x.x + x.1 + 1.x + 1.1 –[ x.x – x .1 + (-1).x + (-1) . (-1)]

= x2 + x + x + 1 – (x2 – x – x + 1)

= x2 + x + x + 1 – x2 + x + x – 1

= (x2 - x2 ) + (x+x+x+x) + (1- 1)

= 4x

Để tìm x, ta lấy kết quả cuối cùng chia cho 4

2 tháng 11 2021

Bài 5:

\(x^3=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\\ \Leftrightarrow x^3=18+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=18\\ y^3=6+3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow y^3=6+3y\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=6\\ P=x^3+y^3-3\left(x+y\right)+1993\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1993\\ P=18+6+1993=2017\)

2 tháng 11 2021

x3=18+33√(9+4√5)(9−4√5)(3√9+4√5+3√9−4√5)⇔x3=18+3x3√1⇔x3−3x=18y3=6+33√(3−2√2)(3+2√2)(3√3+2√2+3√3−2√2)⇔y3=6+3y3√1⇔y3−3y=6P=x3+y3−3(x+y)+1993P=(x3−3x)+(y3−3y)+1993P=18+6+1993=2017

18 tháng 10 2021

Bài 1:

-Kiểu dữ liệu phù hợp là kiểu số thực (real)

Bài 2:

a) a*x*x*x+b*x*x+c*x+d

b) 1/(1+x)*(1+x)-2/(x*x+1)

Bài 3: (Lười quá, nhường bạn khác nhé :D)

 

 

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)a ) Tìm điều kiện của x để biểu thức A có nghĩa b ) Rút gọn biểu thứ A c ) Tìm giá trị của x khi A = 0Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\) a ) Tìm điều kiện của x để biểu thức B có nghĩa b ) Rút gọn biểu thứ B c ) Tìm giá trị của x khi B = 0Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)a ) Tìm x để biểu thức...
Đọc tiếp

Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)

a ) Tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thứ A 

c ) Tìm giá trị của x khi A = 0

Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)\(\frac{9-3x}{x^2-9}\)

 

a ) Tìm điều kiện của x để biểu thức B có nghĩa 

b ) Rút gọn biểu thứ B 

c ) Tìm giá trị của x khi B = 0

Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)

a ) Tìm x để biểu thức A xác định 

b ) Rút gọn biểu thức A 

c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012

d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên 

Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)\(\frac{1}{x-1}\)\(\frac{2}{x^2-1}\)

a ) tìm điều kiện của x để biểu thức A có nghĩa 

b ) Rút gọn biểu thức A 

C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên 

CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !

5
1 tháng 1 2017

Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy

Bài 4:

\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

a) DK x khác +-1

b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)

c) x+1  phải thuộc Ước của 2=> x=(-3,-2,0))

1 tháng 1 2017

1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)

                                      \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)

                                       \(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)

   Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa

b)  \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)

 \(=\frac{x-2}{x+2}\)       

c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)             

\(\Leftrightarrow x-2=\left(x+2\right).0\)          

\(\Leftrightarrow x-2=0\)   

\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )

=> ko có gía trị nào của x để A=0

6 tháng 8 2023

Tham khảo:

loading...

28 tháng 10 2021

\(a,S=\left(x+y\right)\left(x-y\right)\)

\(b,\) Số tiền cần dùng là \(\left(7+3\right)\left(7-3\right)\cdot60000=2400000\left(đồng\right)\)

28 tháng 10 2021

a. \(S=\left(x+y\right)\left(x-y\right)=x^2-y^2\)

b. \(S=7^2-3^2=40\left(m^2\right)\)

\(\Rightarrow\left(40:1\right).60000=2400000\left(d\right)\)