Cho a,b,c là 3 cạnh của tam giác
CMR:(b+c-a)(a+b-c)(a+c-b)<;= a×b×c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé
bài 1 :
Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
\(a^2-\left(b-c\right)^2\le a^2\Rightarrow\left(a-b+c\right)\left(a+b-c\right)\le a^2\)
Tương tự mấy cái còn lại. nhân với nhau =>dpcm
Vì a;b;c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}}\)(bất đẳng thức tam giác)
\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Cộng vế với vế ta được :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)
Áp dụng BĐT \(ab=< \frac{\left(a+b\right)^2}{2}\) .Ta có
(b+c-a)(a+b-c)=<b2
(a+b-c)(a+c-b)=<a2
(a+c-b)(b+c-a)=<c2
=> [(a+b-c)(b+c-a)(a+c-b)]2=<(abc)2
Lại có a,b,c là 3 cạnh của 1 tam giác
=>(b+c-a)(a+b-c)(a+c-b) =< abc(ĐPCM)