Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-\left(b-c\right)^2\le a^2\Rightarrow\left(a-b+c\right)\left(a+b-c\right)\le a^2\)
Tương tự mấy cái còn lại. nhân với nhau =>dpcm
\(\left(a+b+c\right)^2\le\left(2b+c\right)^2\)
Xét hiệu:
\(\left(2b+c\right)^2-9bc=4b^2-5bc+c^2=\left(b-c\right)\left(4b-c\right)\le0\)
Dễ thấy b - c < 0
\(c< a+b\le2b\)
=> 4b - c > 0
Q.E.D dấu "=" xảy ra khi a = b = c
1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0
theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :
2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )
\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
Ta có a + b > c, b + c > a, a + c > b
Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
vậy ...
Lời giải:
Xét hiệu:
$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{a^2-ab-ac}{(b+c)(a+b+c)}=\frac{a[a-(b+c)]}{(b+c)(a+b+c)}$
Vì $a,b,c$ là độ dài 3 cạnh trong một tam giác nên $a>0; a-(b+c)<0; b+c>0; a+b+c>0$
$\Rightarrow \frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{a[a-(b+c)]}{(b+c)(a+b+c)}<0$
$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$
Hoàn toàn tương tự: $\frac{b}{a+c}< \frac{2b}{a+b+c}; \frac{c}{a+b}< \frac{2c}{a+b+c}$
Cộng theo vế các BĐT trên ta được:
$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2$
Ta có đpcm.