Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)
Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)
Nhân vế với vế:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều
GIẢI
Giả sử : \(a\ge b\ge c>0\) thì \(a+b\ge a+c\ge b+c\)
Ta có : \(\frac{a}{b+c}=\frac{a}{b+c}\)
\(\frac{b}{c+a}\le\frac{b}{b+c}\)
\(\frac{c}{a+b}\le\frac{c}{b+c}\)
Cộng vế theo vế ta được :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}\)
Hay : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2\)
Chúc bạn học tốt !!!
GIẢI
Giả sử : a\ge b\ge c>0a≥b≥c>0 thì a+b\ge a+c\ge b+ca+b≥a+c≥b+c
Ta có : \frac{a}{b+c}=\frac{a}{b+c}b+ca=b+ca
\frac{b}{c+a}\le\frac{b}{b+c}c+ab≤b+cb
\frac{c}{a+b}\le\frac{c}{b+c}a+bc≤b+cc
Cộng vế theo vế ta được :
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a+b+c}{b+c}b+ca+c+ab+c+bc≤b+ca+b+c
Hay : \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}\le\frac{a}{b+c}+1< 1+1=2b+ca+c+ab+c+bc≤b+ca+1<1+1=2
Vậy \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{c+b}< 2b+ca+c+ab+c+bc<2
a,b,c thuộc N nữa phương tề.
giả sử b và c đều ko chia hết cho 3
=> b^2;c^2 chia 3 dư 1 hoặc dư 2
=> a^2 chia 3 dư 2 hoặc 1 (tương ứng ở trên)
=> a^2 có dạng 3k+2 hoặc 3k+1
xét các k=1;2;3 thì a đều ko thuộc N => vô lý
=> DPCM
làm dc rk thôi, ko làm dc nữa
---kenny cold----
Nguồn:myself
cách 2
b hoặc c chỉ chia hết cho 3 nếu a là bội số của 5 tức là a = 5k với k là số tự nhiên.
Còn trong các trường hợp khác thì không,
thí dụ:
a = 5 thì b = 3 và c =4 vậy b chia hết cho 3.
a = 10 thì b = 6 và c = 8 vậy trong hai số có b chia hết cho 3 tức là b hoặc c chia hết cho 3
cách 3
nếu a, b, c là ba cạnh của một tam giác vuông (a là cạnh huyền) thì b hoặc c chia hết cho 3?
Đề này có vấn đề rồi ví dụ nhé :
Trên hai cạnh của góc vuông xAy đặt AB = AC = 4 .
Tam giác ABC vuông cạnh huyền BC = a
cạnh AC = b, cạnh AB = c cả hai cạnh này đều không chia hết cho 3
Ta có bất đẳng thức sau
a2 + b2 + c2 \(\ge\) ab + bc + ca (1)
Dấu "=" xảy ra <=> a = b = c
Thật vậy (1) <=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (bđt này luôn đúng)
Khi đó ta được (1) <=> 2(a2 + b2 + c2) \(\ge\) 2(ab + bc + ca)
<=> 3(a2 + b2 + c2) \(\ge\) 2ab + 2bc + 2ca + a2 + b2 + c2
<=> 3(a2 + b2 + c2) \(\ge\) (a + b + c)2
=> -(a2 + b2 + c2) \(\le\dfrac{(a+b+c)^2}{3}\)
Ta có \(P=\dfrac{b+c}{b+c-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\)
\(=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}+3\)
\(=\dfrac{a^2}{ab+ac-a^2}+\dfrac{b^2}{ab+bc-b^2}+\dfrac{c^2}{ac+bc-c^2}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{ab+ac-a^2+ab+bc-b^2+ac+bc-c^2}+3\) (BĐT Schwarz)
\(=\dfrac{\left(a+b+c\right)^2}{2ab+2ac+2bc-a^2-b^2-c^2}+3\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-2\left(a^2+b^2+c^2\right)}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-\dfrac{2}{3}\left(a+b+c\right)^2}+3=\dfrac{1}{1-\dfrac{2}{3}}+3=6\) (đpcm)
Vì a;b;c là độ dài 3 cạnh của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\b+c>a\end{cases}}\)(bất đẳng thức tam giác)
\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Cộng vế với vế ta được :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)