Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi biểu thức ban đầu tương đương:
4abc > a[ a² - (b-c)²] +b[b² - (a-c)²] +c[c² - (a-b)²]
<=> 4abc > a(a+b-c)(a+c-b) + b(b+c-a)(b+a-c) + c(c+b-a)(c+a-b)
Đến đây thì đặt ẩn phụ kiểu quen thuộc rồi ;)
Đặt a+b-c = x ; b+c-a =y ; c+a-b =z (x,y,z > 0 ) Thì a= (x +z)/2 ; b= (x+y/2) ; c= (y+z)/2
Biểu thức trở thành:
(x+y)(y+z)(z+x) > (x+z)xz + (x+y)xy + (y+z)yz
Đơn giản rồi ; biểu thức này tương đương 2xyz > 0 (đúng với a,b,c là 3 cạnh của 1 tam giác ;)
*Mở rộng thêm: Còn chứng minh được a^3 +b^3 +c^3 +3abc >= a²(b+c) +b²(a+c) +c²(b+a) > a^3 +b^3 +c^3 +2abc với a,b,c là 3 cạnh của 1 tam giác ;)
Do a;b;c là 3 cạnh của 1 tam giác
\(\Rightarrow a< b+c\Rightarrow2a< a+b+c=6\Rightarrow a< 3\)
Chứng minh tương tự ta được: \(b< 3;c< 3\)
\(\Rightarrow3-a>0;3-b>0,3-c>0\)
Do đó:
\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\dfrac{3-a+3-b+3-c}{3}\right)^3=\left(\dfrac{9-\left(a+b+c\right)}{3}\right)^3=1\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27\le1\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27\le1\)
\(\Leftrightarrow abc\ge3\left(ab+bc+ca\right)-28\)
\(\Leftrightarrow2abc\ge6\left(ab+bc+ca\right)-56\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-56\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56=52\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=2\)
BĐT vế phải:
Vẫn từ chứng minh trên, \(3-a>0;3-b>0,3-c>0\)
\(\Rightarrow\left(3-a\right)\left(3-b\right)\left(3-c\right)>0\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27>0\)
\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27>0\)
\(\Leftrightarrow abc< 3\left(ab+bc+ca\right)-27\)
\(\Leftrightarrow2abc< 6\left(ab+bc+ca\right)-54\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-54\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a+b+c\right)^2-54=54\) (đpcm)
do a,b,c là 3 cạnh của tam giác nên:
c<a+b => 2c<a+b+c => 2c<2 => c<1
Tương tự ta cm được a<1; b<1
vì a<1 => 1-a >0
b<1 => 1-b >0
c<1 => 1-c>0
=> (1-a)(1-b)(1-c) > 0
=> 1- (a+b+c) +ab+bc+ac-abc >0
=>ab+ac+bc-1>abc (a+b+c=0, chuyển vế đổi dấu)
=>2ab+2ac+2bc-2>2abc
Vậy a2+b2+c2+2abc < a2+b2+c2+2ab+2ac+2bc-2= (a+b+c)2-2=4-2=2
Vậy => dpcm