Tính nhanh 1+2+2^2+2^3+....+2^99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)
\(=6,3.1,2-21.3,6\)
\(=0,9.7.4.3-7.3.0,9.4\)
\(=6,3.1,2-6,3.1,2\)
\(=0\)
\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
B = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99
=> 2B = 2(1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99)
=> 2B = 1 + 1/2 + 1/2^2 +... + 1/2^98
=> 2B - B = 1+1/2+1/2^2+...+1/2^98 - (1/2+1/^2+1/2^3+...+1/2^99)
=> B = 1-1/2^99
Vậy B = 1 - 1/2^99
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta đặt:
S = 1 + (1 + 2) + (1 + 2 + 3) + ... + (1 + 2 + 3 + ... + 99)
S x 2 = 1 x 2 + 2 x 3 + 3 x 4 + .... + 99 x 100
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
\(E=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-1+\dfrac{1}{99}=\dfrac{2}{99}-1=-\dfrac{97}{99}\)
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^99`
`2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^100`
`2A - A = (2 + 2^2 + 2^3 + 2^4 + ... + 2^100) - (1 + 2 + 2^2 + 2^3 + ... + 2^99)`
`A = 2^100 - 1`
Đặt: `A = 1 + 2 + 2^2 + 2^3 + ... + 2^99`
`2A = 2 . ( 1 + 2 + 2^2 + 2^3 + ... + 2^99)`
`2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^100`
`2A - A = (2 + 2^2 + 2^3 +2^4 + ... + 2^100) -( 1 + 2 + 2^2 + 2^3 + ... + 2^99)`
`A = 2^100 - 1`
Vậy: `1 + 2 + 2^2 + 2^3 + ... + 2^99 = 2^100 - 1`