K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

a)(x-3)(x+3)-(x+5)2+(x+1)(x+2)

=x2-9-x-10x-25+x2+2x+x+2

=2x2-8x-32

b)2 . 25 - 8 . 5 - 32=78

a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-1}{x-2}\)

b: Khi x=1/2 thì \(B=\dfrac{-1}{\dfrac{1}{2}-2}=\dfrac{2}{3}\)

Khi x=-1/2 thì B=2/5

c: Để B nguyên thì \(x-2\in\left\{1;-1\right\}\)

hay \(x\in\left\{3;1\right\}\)

8 tháng 3 2022

a, đk : x khác -2 ; 2 

\(B=\left(\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)

\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{1}{2-x}\)

b, Ta có \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2};x=-\dfrac{1}{2}\)

Với x = 1/2 ta được \(B=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)

Với x = -1/2 ta được \(B=\dfrac{1}{2+\dfrac{1}{2}}=\dfrac{2}{5}\)

c, \(\dfrac{1}{2-x}\Rightarrow2-x\inƯ\left(1\right)=\left\{\pm1\right\}\)

2-x1-1
x13

 

10 tháng 7 2023

a) \(A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

\(A=\dfrac{x-5+2x+10-2x-10}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{1}{x+5}\)

b) \(A=-3\Rightarrow\dfrac{1}{x+5}=-3\)

\(\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}-5=\dfrac{-16}{3}\)

\(9x^2-42x+49=\left(3x-7\right)^2=\left(3.\dfrac{-16}{3}-7\right)^2=\left(-23\right)^2=529\) \(\left(x=\dfrac{-16}{3}\right)\)

a: \(P=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: Khi x=9 thì \(P=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=\dfrac{-1}{4}\)

c: Để P=1/2 thì căn x-5/căn x+5=1/2

=>2 căn x-10=căn x+5

=>căn x=15

=>x=225

7 tháng 12 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

2 tháng 12 2021

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne3;x\ne-3\end{cases}}}\)

Vậy ĐKXĐ: x khác -3; x khác 3 ( b vào tcn của mìnk để thấy chi tiết)

Rút gọn:

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

\(\Leftrightarrow A=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\) MTC: (x-3)(x+3)

\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-\left(3x^2-2x-9\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{9x-3x^2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{3x\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-3x}{x+3}\)

Vậy A=-3x/x+3 với x khác 3 và x khác -3

b) |x-2|=1

Bỏ dấu gt tuyệt đối ta có 2 TH: (đối chiếu đkxđ)

* x-2=1=> x=1+2=>x=3 (o t/m)

*x-2=-1=>x=-1+2=>x=1 (tm)

Thay x=1 vào phân thức A rút gọn ta có:

\(A=\frac{-3x}{x+3}=\frac{-3.1}{1+3}=\frac{-3}{4}\)

Vậy A=-3/4 khi x=1

c) Để A có gt nguyên => A thuộc Z

=> \(A=\frac{-3x}{x+3}\in Z\)

Ta có:  -3x chia hết x+3

=> -3(x-3)-9 chia hết x+3

=> -9 chia hết cho x+3

=>  x+3 thược Ư(-9)={1;-1;9;-9;3;-3)

Lập bảng thay vào hoặc o cần cx được 

x+31-19-93-3
x-2(tm)-4(tm)6(tm)-12(tm)0(tm)-6(tm)

Vậy...


 

24 tháng 8 2018

4) (3x-2)(x-3)= 3x(x-3)-2(x-3)

=3x.x+3x.(-3)-2.x-2.(-3)

=\(3x^2\)-9x-4x+6

=\(3x^2\)+(-9x-4x)+6

=\(3x^2\)-13x+6

5) (2x+1)(x+3)=2x(x+3)+1(x+3)

=2x.x+2x.3+1.x+1.3

=\(2x^2\)+6x+1x+3

=\(2x^2\)+(6x+1x)+3

=\(2x^2\)+7x+3

6) (x-3)(3x-1)=x(3x-1)-3(3x-1)

=x.3x+x.(-1)-3.3x-3.(-1)

=\(3x^2\)-1x-9x+3

=\(3x^2\)+(-1x-9x)+3

=\(3x^2\)-10x+3

rút gọn biểu thức

A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)

=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)

=\(x^2\)-\(x^2\)+1x-4x+4

=(\(x^2-x^2\))+(1x-4x)+4

= -3x+4

B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)

=\(x^2+2x\)-x.x-x.4+2.x+2.4

=\(x^2+2x-x^2-4x+2x+8\)

=(\(x^2-x^2\))+(2x-4x+2x)+8

=8

tính giá trị biểu thức

A=3(x-2)-(2+x)(x-3)

=3.x+3.(-2)-2(x-3)-x(x-3)

=3x-6-2.x-2.(-3)-x.x-x(-3)

=3x-6-2x+6-\(x^2\)+3x

=(3x-2x+3x)+(-6+6)\(-x^2\)

=4x - \(x^2\)

thay x=-8 vào biểu thức thu gọn ta được:

4.(-8)- (-8)\(^2\)

= - 32 +64

= 32

B= x(3-x)-(1+x)(1-x)

=x.3+x.(-x)-1(1-x)-x(1-x)

=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)

=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)

=(3x+1x-1x)+(\(-x^2+x^2\))-1

=3x-1

thay x=-5 vào biểu thức thu gọn ta được:

3.(-5)-1

=-15-1

=-16

24 tháng 8 2018

Thu gọn biểu thức

4) (3x - 2) (x - 3) 

= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )

= 3x2 - 2x - 3x x 3 + 2 x 3

= 3x2 - 2x - 9x + 6

= 3x2 - 11x + 6 

5) (2x + 1) (x + 3) 

= ( 2x2 + 1x ) + ( 6x + 3 )

= 2x2 + 1x + 6x + 3

= 2x2 + 7x + 3

6) (x - 3) (3x - 1) 

= ( 3x2 - 9x ) - ( x - 3 )

= 3x2 - 9x - x + 3

= 3x2 - 10 + 3

Rút gọn biểu thức

A) x^2 - (x + 4) (x - 1)

= x2 - ( x+ 4x ) - ( x + 4 )

= x- x2 - 4x - x - 4

= -5x - 4

B) x (x + 2) - (x - 2) (x + 4)

= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )

= x+ 2x - x2 + 2x + 4x - 8

= 8x - 8

Tính giá trị biểu thức

A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8

Thế x = -8 vào, ta có :

= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )

= 3 x ( -10 ) - ( - 6 ) ( -11 )

= -30 - 66

= -96

B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5

Thế x = - 5 vào, ta có :

= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )

= -5 x 8 - (-4) x 6

= - 40 - -24

= -40 + 24

= -16

100% đúng 

hok tốt nha 

4 tháng 7 2018

\(a,P=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\)

\(=\left(x^2+5x+5\right)^2-1+1\)

\(=\left(x^2+5x+5\right)^2\ge0\forall x\)

Vậy \(P\ge0\forall x\)

\(b,P=\left(x^2+5x+5\right)^2\left(cmt\right)\)

Thay \(x=\frac{\sqrt{7}-5}{2}\)vào P ta được

\(P=\left(\left(\frac{\sqrt{7}-5}{2}\right)^2+5.\frac{\sqrt{7}-5}{2}+5\right)^2\)

\(=\left(\frac{7-10\sqrt{7}+25}{4}+\frac{10\sqrt{7}-50}{4}+\frac{20}{4}\right)^2\)

\(=\left(\frac{32-10\sqrt{7}+10\sqrt{7}-50+20}{4}\right)^2\)

\(=\left(\frac{2}{4}\right)^2\)

\(=\frac{1}{4}\)

4 tháng 7 2018

a,

P=(x+1)(x+2)(x+3)(x+4)+1

P=[(x+1).(x+4)].[(x+2).(x+3)]+1

P=(x^2+5x+4)(x^2+5x+6)+1

P=[(x^2+5x+5)-1].[(x^2+5x+5)+1]+1

P=(x^2+5x+5)^2-1+1

P=\(\left(x^2+5x+5\right)^2\) \(\ge\)0 với mọi x

Câu b thì thay x vào rồi bấm máy ra ra kết quả