Với A,BA,B là hai biểu thức bất kì, (A + B)^2(A+B)2 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + b)(a + b) = a(a + b) + b(a + b)
= a2 + ab + ba + b2
= a2 + 2ab + b2
a, Ta có:
Đặt a=2k, b=2k+1
Suy ra ab(a+b)=2k(2k+1)(2k+2k+1) chia hết cho 2
Đặt a=2k+1; b=2k
Suy ra ab(a+b)=(2k+1)2k(2k+2k+1) chia hết cho 2
Đặt a=2k;b=2k
Suy ra ab(a+b)=2k.2k.4k chia hết cho 2
Đặt a=2k+1;b=2k+1
Suy ra ab(a+b)=(2k+1)(2k+1)(2k+1+2k+1)=2(2k+1)(2k+1)(2k+1) chia hết cho 2
Vậy ab(a+b) chia hết cho 2 với mọi a;b
Câu khác tương tự
câu c) ab+ba=10a+b+10b+a
=11a+11b
=11(a+b)
vì 11 chia hết cho 11 nên 11(a+b) chia hết cho 11
vậy ab+ ba chia hết cho 11
Phương án A sai vì có thể xảy ra trường hợp giống câu 4 như hình sau:
Phương án B và C sai vì có thể sảy ra như hình sau.
Phương án D đúng vì: có thể ba vecto n → , a → , b → đồng phẳng hoặc không đồng phẳng như hai hình trên.
Đáp án D
a) Tia gốc A là hình tạo thành bởi điểm A và một phần đường thẳng được chia ra bởi O.
b) Điểm M bất kì nằm trên đường thẳng xy là gốc chung của hai tia đối nhau Mx, My.
c) Nếu điểm C nằm giữa hai điểm A và B thì:
- Hai tia CA, CB đối nhau.
- Hai tia BA và BC trùng nhau.
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
\(\begin{array}{l}{ + \, (\overrightarrow a + \overrightarrow b )^2} = (\overrightarrow a + \overrightarrow b )(\overrightarrow a + \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a + \overrightarrow b ) + \overrightarrow b .(\overrightarrow a + \overrightarrow b ) \\= {\overrightarrow a ^2} + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} + 2\overrightarrow a .\overrightarrow b + {\overrightarrow b ^2}.\\ + \, {(\overrightarrow a - \overrightarrow b )^2} =(\overrightarrow a - \overrightarrow b )(\overrightarrow a - \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a - \overrightarrow b ) - \overrightarrow b .(\overrightarrow a - \overrightarrow b ) \\= {\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b - \overrightarrow b .\overrightarrow a + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} - 2\overrightarrow a .\overrightarrow b + {\overrightarrow b ^2}. \\ + \, (\overrightarrow a - \overrightarrow b )(\overrightarrow a + \overrightarrow b ) \\= \overrightarrow a .(\overrightarrow a - \overrightarrow b ) + \overrightarrow b .(\overrightarrow a - \overrightarrow b ) \\= {\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a - {\overrightarrow b ^2} \\= {\overrightarrow a ^2} - {\overrightarrow b ^2}.\end{array}\)
(a + b)^2 = (a + b) . (a + b)
= a^2 + ab + ba + b^2
= a^2 + 2ab + b^2