Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{a}\perp\overrightarrow{b}\Rightarrow\overrightarrow{a}.\overrightarrow{b}=0\)
\(\left(2\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=2a^2+2\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{a}.\overrightarrow{b}-b^2\)
\(=2a^2-b^2+\overrightarrow{a}.\overrightarrow{b}\)
\(=2.1-2+0=0\)
\(\Rightarrow\left(2\overrightarrow{a}-\overrightarrow{b}\right)\perp\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(\overrightarrow{x}\) ⊥ \(\overrightarrow{y}\)
⇒ \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{2a}-\overrightarrow{b}\right)=0\). Đặt \(\left|\overrightarrow{a}\right|=a;\left|\overrightarrow{b}\right|=b\)
⇒ 2a2 - \(\overrightarrow{a}.\overrightarrow{b}\) + 2\(\overrightarrow{a}.\overrightarrow{b}\) - b2 = 0
⇒ \(\overrightarrow{a}.\overrightarrow{b}\) = b2 - 2a2 = 4 - 4 = 0
⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=90^0\)
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2-2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|^2+\overrightarrow{a}\overrightarrow{b}-\overrightarrow{a}\overrightarrow{b}+\left|\overrightarrow{b}\right|^2\)\(=\left|\overrightarrow{a}\right|^2-\left|\overrightarrow{b}\right|^2\).
\(\overrightarrow{u}=2\overrightarrow{a}+3\overrightarrow{b}-5\overrightarrow{c}=\left(-30;21\right)\)
Tính \(\overrightarrow{a}.\overrightarrow{b}\) hả bạn?
\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|cos\left(\overrightarrow{a};\overrightarrow{b}\right)=2.\sqrt{3}.cos30^0=3\)
Tính \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\)
Chọn D. Đây là một tính chất của tích vô hướng.
A. Sai vì \(({\overrightarrow a .\overrightarrow b})\overrightarrow c = [ {|\overrightarrow a |.|\overrightarrow b |\;\,\cos ( {\overrightarrow a ,\overrightarrow b } )} ].\overrightarrow c \ne \)\(\overrightarrow a \,\,( {\overrightarrow b .\overrightarrow c }) = \overrightarrow a \,\,[ {|\overrightarrow b |.|\overrightarrow c |\;\,\cos ( {\overrightarrow b ,\overrightarrow c })}]\)
B. Sai vì \((\overrightarrow a .\overrightarrow b)^2 = {[{\overrightarrow a .\overrightarrow b = | {\overrightarrow a } |.| {\overrightarrow b }|\,\cos ( {\overrightarrow a ,\overrightarrow b })}]^2} = {\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}.{\cos ^2}( {\overrightarrow a ,\overrightarrow b } )\)\( \ne \;\;{\overrightarrow a ^2}\,.\,{\overrightarrow b ^2}\)
C. Sai vì \(\overrightarrow a .\overrightarrow b = | {\overrightarrow a }|.| {\overrightarrow b } |\,\cos ( {\overrightarrow a ,\overrightarrow b }) \ne | {\overrightarrow a }|.| {\overrightarrow b }|\,\sin ( {\overrightarrow a ,\overrightarrow b })\)
\(u.v=0\Leftrightarrow\left(2a+3b\right)\left(-15a+14b\right)=0\)
\(\Leftrightarrow-30a^2+42b^2-17ab=0\)
\(\Leftrightarrow ab=\frac{-30.4^2+42.3^2}{17}=-6\)
\(\Rightarrow cos\left(a;b\right)=\frac{ab}{\left|a\right|\left|b\right|}=-\frac{6}{12}=-\frac{1}{2}\Rightarrow\left(a;b\right)=120^0\)
\(\begin{array}{l}{ + \, (\overrightarrow a + \overrightarrow b )^2} = (\overrightarrow a + \overrightarrow b )(\overrightarrow a + \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a + \overrightarrow b ) + \overrightarrow b .(\overrightarrow a + \overrightarrow b ) \\= {\overrightarrow a ^2} + \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} + 2\overrightarrow a .\overrightarrow b + {\overrightarrow b ^2}.\\ + \, {(\overrightarrow a - \overrightarrow b )^2} =(\overrightarrow a - \overrightarrow b )(\overrightarrow a - \overrightarrow b )\\ = \overrightarrow a .(\overrightarrow a - \overrightarrow b ) - \overrightarrow b .(\overrightarrow a - \overrightarrow b ) \\= {\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b - \overrightarrow b .\overrightarrow a + {\overrightarrow b ^2} \\= {\overrightarrow a ^2} - 2\overrightarrow a .\overrightarrow b + {\overrightarrow b ^2}. \\ + \, (\overrightarrow a - \overrightarrow b )(\overrightarrow a + \overrightarrow b ) \\= \overrightarrow a .(\overrightarrow a - \overrightarrow b ) + \overrightarrow b .(\overrightarrow a - \overrightarrow b ) \\= {\overrightarrow a ^2} - \overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow a - {\overrightarrow b ^2} \\= {\overrightarrow a ^2} - {\overrightarrow b ^2}.\end{array}\)