Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta có:
\(\left(\overrightarrow{a}+2\overrightarrow{b}\right)\left(5\overrightarrow{a}-4\overrightarrow{b}\right)=0\)
\(\Leftrightarrow\overrightarrow{a}.5\overrightarrow{a}-\overrightarrow{a}.4\overrightarrow{b}+2\overrightarrow{b}.5\overrightarrow{a}-2\overrightarrow{b}.4\overrightarrow{b}=0\)
\(\Leftrightarrow5a^2+6\overrightarrow{a}.\overrightarrow{b}-8b^2=0\)
\(\Leftrightarrow\left(5\overrightarrow{a}-4\overrightarrow{b}\right)\left(\overrightarrow{a}+2\overrightarrow{b}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\\\overrightarrow{a}=-2\overrightarrow{b}\end{matrix}\right.\)
Nếu \(\overrightarrow{a}=\dfrac{4}{5}\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=0^o\)
Nếu \(\overrightarrow{a}=-2\overrightarrow{b}\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=180^o\)
\(\overrightarrow{a}\perp\overrightarrow{b}\Rightarrow\overrightarrow{a}.\overrightarrow{b}=0\)
\(\left(2\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=2a^2+2\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{a}.\overrightarrow{b}-b^2\)
\(=2a^2-b^2+\overrightarrow{a}.\overrightarrow{b}\)
\(=2.1-2+0=0\)
\(\Rightarrow\left(2\overrightarrow{a}-\overrightarrow{b}\right)\perp\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
Tính \(\overrightarrow{a}.\overrightarrow{b}\) hả bạn?
\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|cos\left(\overrightarrow{a};\overrightarrow{b}\right)=2.\sqrt{3}.cos30^0=3\)
Tính \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\)
a: Đặt \(\overrightarrow{a}=\overrightarrow{AB};\overrightarrow{BC}=\overrightarrow{b}\)
\(\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|=\left|\overrightarrow{AB}\right|+\left|\overrightarrow{BC}\right|\)=AB+BC
|vecto a+vecto b|=|vecto AB+vecto BC|=AC
AB+BC=AC
=>A,B,C thẳng hàng
=>vecto AB và vecto BC cùng hướng
c: |vecto a+vecto b|=|vecto a-vecto b|
=>vecto a+vecto b=vecto a-vecto b hoặc vecto a+vecto b=vecto b-vecto a
=>vecto b=vecto0 hoặc vecto a=vecto 0
b) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\) khi vectơ a và vectơ b cùng hướng
Lời giải:
Xét hai vecto bất kỳ \(\overrightarrow{AB}, \overrightarrow{CD}\). Kẻ vecto $\overrightarrow{CT}$ sao cho $\overrightarrow{CT}=\overrightarrow{BA}$
Ta có:
\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{TC}+\overrightarrow{CD}|=|\overrightarrow{TD}|\)
\(|\overrightarrow{AB}|+|\overrightarrow{CD}|=|\overrightarrow{TC}|+|\overrightarrow{CD}|\)
Mà theo bđt tam giác thì:
\(|\overrightarrow{TC}+\overrightarrow{CD}|\geq |\overrightarrow{TD}|\Rightarrow |\overrightarrow{AB}|+\overrightarrow{CD}|\geq |\overrightarrow{AB}+\overrightarrow{CD}|\)
Dấu "=" xảy ra khi \(T, C,D\) thẳng hàng và $C$ nằm giữa $T,D$
$\Leftrightarrow \overrightarrow{TC}, \overrightarrow{CD}$ cùng hướng
$\Leftrightarrow \overrightarrow{AB}, \overrightarrow{CD}$ cùng hướng
Vậy với $\overrightarrow{a}, \overrightarrow{b}$ bất kỳ thì $|\overrightarrow{a}|+|\overrightarrow{b}|\geq |\overrightarrow{a}+\overrightarrow{b}|$. Dấu "=" xảy ra khi $\overrightarrow{a}, \overrightarrow{b}$ cùng hướng.
------------------
Áp dụng vào bài toán:
\(|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|\leq |\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{c}|\leq |\overrightarrow{a}|+|\overrightarrow{b}|+|\overrightarrow{c}|\)
Dấu "=" xảy ra khi \(\overrightarrow{a}, \overrightarrow{b}\) cùng hướng và \(\overrightarrow{a}+\overrightarrow{b}, \overrightarrow{c}\) cùng hướng
\(\Leftrightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) cùng hướng
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2-2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|^2+\overrightarrow{a}\overrightarrow{b}-\overrightarrow{a}\overrightarrow{b}+\left|\overrightarrow{b}\right|^2\)\(=\left|\overrightarrow{a}\right|^2-\left|\overrightarrow{b}\right|^2\).