tìm STN(a,b)bé hơn 0 biết a.b=10 và BCNN(a,b)=60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Vì BCNN(a,b) . ƯCLN(a,b) =a . b
mà BCNN = 60
Tích = 360
=) ƯCLN = 360 : 60 = 6
Đặt a = 6 . a` ; b = 6 . b`
=)ƯCLN(a` , b`) = 1
=)a . b 6 . a` . 6 .b` = 36 . a` . b` = 360
a` 1 2 5 10
b` 10 5 2 1
=)a` = 1 ; b` = 10 thì a = 1 . 6 ; b = 10 .6 ; a = 6 ; b = 60 ; tích a . b = 360
=)a` = 2 ; b` = 5 thì a = 2 . 6 ;b = 5 . 6 ; a = 12 ; b = 30 ; tích a . b = 360
=)a` = 5 ; b` = 2 thì a = 5 . 6 ;b = 2 . 6 ; a = 30 ; b = 12 ; tích a . b = 360
=)a` = 10 ; b` = 1 thì a = 10.6 ; b = 1 . 6 ; a = 60 ; b = 6 ; tích a . b =360
Vậy a = 6 thì b = 60
a = 12 thì b = 30
a = 30 thì b = 12
a = 60 thì b =6
Lời giải:
a.
$ab=ƯCLN(a,b).BCNN(a,b)$
$\Rightarrow 9000=ƯCLN(a,b).900$
$\Rightarrow ƯCLN(a,b)=10$.
Đặt $a=10x, b=10y$ thì $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
$BCNN(a,b)=10xy=900$
$\Rightarrow xy=90$
Vì $(x,y)=1$ nên ta có các cặp $(x,y)$ sau thỏa mãn:
$(x,y)=(1,90), (2,45), (5,18), (9,10), (10,9), (18,5), (45,2), (90,1)$
Từ đây bạn dễ dàng tìm được $a,b$
b.
$ƯCLN(a,b)=ab:BCNN(a,b)=360:60=6$
Đặt $a=6x, b=6y$ với $x,y$ là stn nguyên tố cùng nhau.
$\Rightarrow BCNN(a,b)=6xy=60$
$\Rightarrow xy=10$
Do $x,y$ nguyên tố cùng nhau nên:
$(x,y)=(1,10), (2,5), (5,2), (10,1)$
Từ đây dễ dàng tìm được $a,b$
a) Đặt a = 15m ; b = 15n ; (m,n) = 1
Khi đó ta có : BCNN(a;b) = 15mn = 2100.15 = 31500
Vậy thì mn = 2100 = 22.3.52.7 = 1.2100 = 4.525 = 3.700 = 25.84 = 7.300 = 12.175 = 100.21 = 28.75
Vậy nên ta có các cặp (a;b) thỏa mãn là: (15, 31500) ; (31500 , 15) ; ( 60 , 7875) ; (7875 , 60) ; (45 , 10500) ; (10500 , 45) ; (375 , 1260) ; (1260 , 375) ; (105 , 1500) , (1500 , 105) ; (180, 2625) ; (2625 , 180) ; (1500 , 315) ; (315, 1500) ; (420 , 1125) ; (1125 , 420).
b) Đặt d = (a,b). Khi đó a = dm ; b = dn ; (m,n) = 1
Ta có dm.dn = 180 và dmn = 20.d
Vậy thì mn = 20 và d2 = 180 : 20 = 9
Vậy thì d = 3.
Ta có mn = 20 = 22.5 = 1.20 = 4.5
Vậy nên cá cặp số (a;b) thỏa mãn là: (3,60) ; (60, 3) ; (12, 15) ; (15, 12).
Bấm vô đây:
Câu hỏi của Thái Kim Huỳnh - Toán lớp 6 - Học toán với OnlineMath
a;b ko tồn tại