K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8

Ta thấy 2024=8x11x23

mà khi N=1x3x5x7x...2025+2024:2024 chỉ chia hết cho 11 ;23 và 2024,còn 8 trong tích N có 9:8 dư 1

Vậy N=1x3x5x7x...x2025+2024 : 2024 sẽ dư 1. Kết luận theo đề bài là đúng.

12 tháng 8 2020

* Ta c/m: \(x^5-x⋮30\forall x\in Z\)

+ \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)

\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)

\(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮5\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮3\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\) ( do 2,3,5 đôi một nguyên tố cùng nhau ) (1)

+ \(\left(x-1\right)x\left(x+1\right)\) là tích 3 số nguyên liên tiếp

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)x\left(x+1\right)⋮2\\\left(x-1\right)x\left(x+1\right)⋮3\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)x\left(x+1\right)⋮6\) ( do \(\left(2,3\right)=1\) )

\(\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\) (2)

Từ (1) và (2) => đpcm

Trở lại bài toán ta có:

\(P-M=a^{2019}\left(a^5-a\right)+b^{2019}\left(b^5-b\right)+c^{2019}\left(c^5-c\right)⋮30\)

( do \(a^5-a⋮30,b^5-b⋮30,c^5-c⋮30\) )

=> P và M có cùng số dư khi chia 30

=> P chia 30 dư 7

29 tháng 8 2023

\(A=\dfrac{2024x2022-4048}{2020x2024+4040}\)

\(A=\dfrac{2024x2022-2x2024}{2020x2024+2x2020}\)

\(A=\dfrac{2024x\left(2022-2\right)}{2020x\left(2024+2\right)}\)

\(A=\dfrac{2024x2020}{2020x2026}\)

\(A=\dfrac{2024}{2026}\)

\(A=\dfrac{1012}{1013}\)

29 tháng 8 2023

A = 1012/1013

12 tháng 8 2020

Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)

- Chứng minh A chia hết cho 2:
 +) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2

 +) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2

- Chứng minh A chia hết cho 3:
 +) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3

 +) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:

 +) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5

 +) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5

Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)

\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7

TH
Thầy Hùng Olm
Manager VIP
25 tháng 3 2023

 A-B

A = 50+52+54+...52022

52xA=52+54+...52024 

24xA = 52024-1

A=\(\dfrac{5^{2024}-1}{24}\)

B = 51+53+...52023

B =5x(50+52+...52022) = 5xA

M = A-B = A-5xA = -4A

M=\(\dfrac{1-5^{2024}}{6}\)

Vậy 24xA - 1 = 52024

Nên 52024 chia cho 3 dư 2 

HQ
Hà Quang Minh
Giáo viên
19 tháng 10 2023

a) Bác Hồ sinh năm 1890, Bác Hồ sinh nào thế kỉ XIX.

b) Bác Hồ ra đi tìm đường cứu nước vào năm 2011 – 100 = 1911.

    Năm 1911 thuộc thế kỉ XX.

    Năm 2011 thuộc thế kỉ XXI

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Lời giải:

$\frac{a+2013}{a-2013}=\frac{b+2024}{b-2024}$

$\Rightarrow \frac{a-2013+4026}{a-2013}=\frac{b-2024+4048}{b-2024}$

$\Rightarrow 1+\frac{4026}{a-2013}=1+\frac{4048}{b-2024}$

$\Rightarrow \frac{4026}{a-2013}=\frac{4048}{b-2024}$

$\Rightarrow 4026(b-2024)=4048(a-2013)$

$\Rightarrow 4026b-4048a=4026.2024-4048.2013=2.2013.2024-2.2024.2013=0$

$\Rightarrow 4026b=4048a$
$\Rightarrow 2013b=2024a$

$\Rightarrow \frac{a}{2013}=\frac{b}{2024}$

2 tháng 7 2016

Nếu phép chia đầu là đúng là số đó có dạng 12k + 8 ( a thuộc Z )

Có: 12k + 8 = 3(4k)+2.3+2=3(4k+2) +2 chia 3 dư 2.

Do đó phép chia mà số đó chai 3 dư 1 là sai.

2 tháng 7 2016

dấu chấm là * hả bạn

13 tháng 9 2023

b) \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< 1\) ( Vì tử < mẫu )

Ta có: \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2023}+1+9}{10^{2024}+1+9}=\dfrac{10^{2023}+10}{10^{2024}+10}=\dfrac{10.\left(10^{2022}+1\right)}{10.\left(10^{2023}+1\right)}=\dfrac{10^{2022}+1}{10^{2023}+1}=N\)

Vì \(\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2022}+1}{10^{2023}+1}\) nên \(M< N\)